1. Lang V, 20.
(a) Let F be a field and let $E=F(x)$, where x is transcendental over F. Let $K \neq F$ be a subfield of E. Then x is algebraic over K.

Proof: Suppose that y belongs to K but not to F. Then y can be written as $f(x) / g(x)$, where f and g are monic polynomials with coefficients in F, and at least one of them has positive degree. Write $f=\sum a_{i} x^{i}$ and $g=\sum b_{i} x^{i}$, Then $y=f(x) / g(x)$, so $f(x)=$ $y g(x)$. Let $c_{i}:=a_{i}-y b_{i}$. Then $\sum_{i} c_{i} x^{i}=0$, and $\sum 1 c_{i} t^{i}$ is a nonzero polynomial with coefficients in K. This shows that x is algebraic over K.
(b) Suppose that in the context of the proof above, f and g are relative prime and let n be the maximum of the degrees of f and g. Then the degree of x over K is n.

Proof: We have seen that $p(t):=\sum_{i} t^{i} \in K[t]$ annihilates x. Since this polynomial has degree n, the degree of x over K is at most n. To prove equality we must show that $p(t)$ is irreducible in $K[t]$. Note first that y is transcendantal over F, since otherwise x would be algebraic over F. Let $R:=F[y]$, which is a unique factorization domain, and note that $p(t)=\in R[t]$. Furthermore the coefficient $c_{i}=a_{i}-b_{i} y$ is either zero (if $a_{i}=b_{i}=0$, a unit (if $y=0$ and $a_{i} \neq 0$, or irreducible (if $b_{i} \neq 0$ in R. It is clear then the the Gauss content of $p(t)$ is 1 , unless there exist $a, b, d_{i} \in F$ such that $a_{i}-b_{i} y=d_{i}(a-b y)$ for all i. But then $f(x)=a \sum d_{i} x^{i}$ and $g(x)=b \sum d_{i} x^{i}$, contradicting the assumption that f and g are relatively prime. Thus $p(t)$ is primitive in $R[t]$, and it will suffice to prove that it is irreducible as an element of $R[t]=F[y, t]$, which is a polynomial ring in two variables. We have $p(t)=f(t)-y g(t)$. Now let Suppose that $p(t)=\alpha(t, y) \beta(t y)$, with $\alpha, \beta \in F[y, t]$. We have to show that α or β is a unit. Write $p(t)=f(t)-y g(t)$. Then

$$
f(t)-y g(t)=\alpha(t, y) \beta(t, y)
$$

The degree in y of the left side is just 1 , so at most one of α and β involves y, and since β has degree at most 1 in y, we can write $\beta=\gamma(t)=y \delta(t)$ and

$$
f(t)-y g(t)=\alpha(t)(\gamma(t)-y \delta(t)=\alpha(t) \gamma(t)-y \alpha(t) \delta(t) .
$$

Then $f(t)=\alpha(t) \gamma(t)$ and $g(t)=-\alpha(t) \delta(t)$. Since f and g were relatively prime, it follows that α is a unit, and this shows that $p(t)$ is irreducible.

Lang V, 24 Let k be a field of characteristic p and let u and t be algebraically independent variables over k.
(a) Prove that $k(u, t)$ has degree p^{2} over $k(u, t)$.

Proof: First work with the polynomial rings. It is clear that we have a k basis for $k[u, t]$ consisting of the set of monomials $u^{i} t^{j}$, and similarly have a basis for $k\left[u^{p}, t^{p}\right]$ consistsing of the monomials in which all the coeffients are divisible by p. But any i can be written uniquely as $i=i^{\prime}+r$ where i^{\prime} is divisible by p and $0 \leq r<p$. This shows that $\left\{u^{r} t^{s}: 0 \leq r, s<p\right\}$ forms a basis for $k[u, t]$ when viewed as a module over $k\left[u^{p}, t^{p}\right]$. Now if one localizes by the set of all nonzero elements of $k\left[u^{p}, t^{p}\right]$, we still have a basis for the localization of $k[u, t]$ viewed as a module over the field $\left[\left(u^{p}, t^{p}\right)\right.$. But this module is an integral finite dimensional over a field, hence a field, and hence it is all of of $k(u, t)$.
(b) Show that there are infinitely many field extensions between $k\left(u^{p}, t^{p}\right)$ and $k[u, t]$.

Proof: We prove this assuming that k is infinite. In this case let E_{c} be the field extension of $k\left(u^{p}, t^{p}\right)$ generated by $u^{p}+c t^{p}$. It is easy to see that $E_{a} \neq E_{b}$ if $a \neq b$.

