1. Lang V, 20.

(a) Let F be a field and let E = F(x), where x is transcendental over F. Let $K \neq F$ be a subfield of E. Then x is algebraic over K.

Proof: Suppose that y belongs to K but not to F. Then y can be written as f(x)/g(x), where f and g are monic polynomials with coefficients in F, and at least one of them has positive degree. Write $f = \sum a_i x^i$ and $g = \sum b_i x^i$, Then y = f(x)/g(x), so f(x) = yg(x). Let $c_i := a_i - yb_i$. Then $\sum_i c_i x^i = 0$, and $\sum 1c_i t^i$ is a nonzero polynomial with coefficients in K. This shows that x is algebraic over K.

(b) Suppose that in the context of the proof above, f and g are relative prime and let n be the maximum of the degrees of f and g. Then the degree of x over K is n.

Proof: We have seen that $p(t) := \sum_i t^i \in K[t]$ annihilates x. Since this polynomial has degree n, the degree of x over K is at most n. To prove equality we must show that p(t) is irreducible in K[t]. Note first that y is transcendantal over F, since otherwise x would be algebraic over F. Let R := F[y], which is a unique factorization domain, and note that $p(t) = \in R[t]$. Furthermore the coefficient $c_i = a_i - b_i y$ is either zero (if $a_i = b_i = 0$, a unit (if y = 0 and $a_i \neq 0$, or irreducible (if $b_i \neq 0$ in R. It is clear than the the Gauss content of p(t) is 1, unless there exist $a, b, d_i \in F$ such that $a_i - b_i y = d_i (a - by)$ for all *i*. But then $f(x) = a \sum d_i x^i$ and $g(x) = b \sum d_i x^i$, contradicting the assumption that f and g are relatively prime. Thus p(t) is primitive in R[t], and it will suffice to prove that it is irreducible as an element of R[t] = F[y, t], which is a polynomial ring in two variables. We have p(t) = f(t) - yq(t). Now let Suppose that $p(t) = \alpha(t, y)\beta(ty)$, with $\alpha, \beta \in F[y, t]$. We have to show that α or β is a unit. Write p(t) = f(t) - yg(t). Then

$$f(t) - yg(t) = \alpha(t, y)\beta(t, y).$$

The degree in y of the left side is just 1, so at most one of α and β involves y, and since β has degree at most 1 in y, we can write $\beta = \gamma(t) = y\delta(t)$ and

$$f(t) - yg(t) = \alpha(t)(\gamma(t) - y\delta(t)) = \alpha(t)\gamma(t) - y\alpha(t)\delta(t).$$

Then $f(t) = \alpha(t)\gamma(t)$ and $g(t) = -\alpha(t)\delta(t)$. Since f and g were relatively prime, it follows that α is a unit, and this shows that p(t) is irreducible.

- Lang V, 24 Let k be a field of characteristic p and let u and t be algebraically independent variables over k.
 - (a) Prove that k(u, t) has degree p^2 over k(u, t).

Proof: First work with the polynomial rings. It is clear that we have a k basis for k[u, t] consisting of the set of monomials $u^i t^j$, and similarly have a basis for $k[u^p, t^p]$ consistsing of the monomials in which all the coefficients are divisible by p. But any i can be written uniquely as i = i' + r where i' is divisible by p and $0 \le r < p$. This shows that $\{u^r t^s : 0 \le r, s < p\}$ forms a basis for k[u, t] when viewed as a module over $k[u^p, t^p]$. Now if one localizes by the set of all nonzero elements of $k[u^p, t^p]$, we still have a basis for the localization of k[u, t] viewed as a module over the field $[(u^p, t^p)$. But this module is an integral finite dimensional over a field, hence a field, and hence it is all of of k(u, t).

(b) Show that there are infinitely many field extensions between $k(u^p, t^p)$ and k[u, t].

Proof: We prove this assuming that k is infinite. In this case let E_c be the field extension of $k(u^p, t^p)$ generated by $u^p + ct^p$. It is easy to see that $E_a \neq E_b$ if $a \neq b$.