1. Recall that every subgroup A of \mathbf{Z} contains a unique generator $n \in \mathbf{N}$, which if $A \neq\{0\}$, is a basis of A. This gives a "classification" of the subgroups of \mathbf{Z}. Generalize this to find a classification of subgroups of \mathbf{Z}^{n} for $n>1$. For example, if $n=2$, show that every such A has a unique basis of one of the following types:
(a) $\beta=((a, b),(0, d))$, where $a, d>0$ and $0 \leq b<d$.
(b) $\beta=((a, b))$, where $a>0$.
(c) $\beta=((0, b))$, where $b>0$.
2. Let A and be an $m \times n$ matrix with coefficients in \mathbf{Z}. Left multiplication A defines a homomorphism of groups $T_{A}: \mathbf{Z}^{n} \rightarrow \mathbf{Z}^{m}$. Let G_{A} be the cokernel of this map. Thus A gives a presenation of the group G_{A}. Note that if there exist invertible matrices B and C such that $A^{\prime}=B A C$. then $G_{A^{\prime}}$ is isomorphic to G_{A}. As we saw in class, one can find B and C which are products of elementary matrices such that A^{\prime} is a diagonal matrix, with entries $\left(d_{1}, d_{2}, \cdots d_{r}\right)$, where d_{i} divides d_{i+1} for all i. Then G_{A} is isomorphic to $\oplus_{i} \mathbf{Z} / d_{i} \mathbf{Z}$.
Prove that if $G=\oplus \mathbf{Z} / d_{i} \mathbf{Z}$ and G^{\prime} is a quotient of G, then G^{\prime} is isomorphic to $\oplus_{i} \mathbf{Z} / d_{i}^{\prime} \mathbf{Z}$, where each d_{i}^{\prime} divides d_{i}. Hint: It suffices to treat the case in which G^{\prime} is the quotient of G by a cyclic subgroup generated by some g. In terms of a presentation, this means taking a diagonal matrix $\left(d_{1}, \ldots\right)$ as above, sticking on one additional column, and then doing elementary row and column operations to compute the new sequence $\left(d_{1}^{\prime}, \ldots\right)$.
You can use this to solve problem 43.
