- 1. Recall that every subgroup A of Z contains a unique generator $n \in \mathbf{N}$, which if $A \neq \{0\}$, is a basis of A. This gives a "classification" of the subgroups of Z. Generalize this to find a classification of subgroups of \mathbf{Z}^n for n > 1. For example, if n = 2, show that every such A has a unique basis of one of the following types:
 - (a) $\beta = ((a, b), (0, d))$, where a, d > 0 and $0 \le b < d$.
 - (b) $\beta = ((a, b))$, where a > 0.
 - (c) $\beta = ((0, b))$, where b > 0.
- 2. Let A and be an $m \times n$ matrix with coefficients in \mathbf{Z} . Left multiplication A defines a homomorphism of groups $T_A: \mathbf{Z}^n \to \mathbf{Z}^m$. Let G_A be the cokernel of this map. Thus A gives a presenation of the group G_A . Note that if there exist invertible matrices B and C such that A' = BAC. then $G_{A'}$ is isomorphic to G_A . As we saw in class, one can find B and C which are products of elementary matrices such that A' is a diagonal matrix, with entries $(d_1, d_2, \cdots d_r)$, where d_i divides d_{i+1} for all i. Then G_A is isomorphic to $\oplus_i \mathbf{Z}/d_i \mathbf{Z}$.

Prove that if $G = \bigoplus \mathbf{Z}/d_i \mathbf{Z}$ and G' is a quotient of G, then G' is isomorphic to $\bigoplus_i \mathbf{Z}/d'_i \mathbf{Z}$, where each d'_i divides d_i . Hint: It suffices to treat the case in which G' is the quotient of G by a cyclic subgroup generated by some g. In terms of a presentation, this means taking a diagonal matrix (d_1, \ldots) as above, sticking on one additional column, and then doing elementary row and column operations to compute the new sequence (d'_1, \ldots) .

You can use this to solve problem 43.