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Recall the following key result:

Theorem 1 (Independence of characters) Let M be a monoid and let
K be a field. Then the set of monoid homomorphisms from M to the
multiplicative monoid of K is a linearly independent subset of the K-vector
space KM .

Proof: It is enough to prove that if χ1, . . . , χn is a sequence of distinct
homorphismsM → K and c1, . . . , cn is a sequence inK such that

∑
ciχi = 0,

then each ci = 0. We do this by induction on n. If n = 1, we have have
c1 = c1χ1(1) = 0, so c1 = 0. For the induction step, observe that for any
g, h ∈M , we have

c1χ1(g) + · · ·+ cnχn(g) = 0
c1χ1(gh) + · · ·+ cnχn(gh) = 0

Multiply the first equation by χn(h) and subtract from the second equation
to obtain

c1χ1(g)(χ1(h)− χn(h)) + · · ·+ cn−1χn−1(g)(χn−1(h)− χn(h)) = 0

Fixing h and letting g vary, we see that

c1(χ1(h)− χn(h))χ1 + · · ·+ cn−1(χn−1(h)− χn(h))χn−1 = 0.

By the induction assumption, ci(xi(h)−χn(h)) = 0 for all h and 1 ≤ i < n.
Since χi 6= χn if i < n, this implies that ci = 0 if i < n. Then cnχn = 0 and
it follows also that cn = 0.

Now let k be a field and let Ak denote the category of k-algebras.

1



Corollary 2 If k is a field, if A and K are objects of Ak and K is a field,
then the set

XK(A) := MorAk
(A,K)

is a linearly independent subset of the K-vector space Homk(A,K). In
particular, if A is finite dimensional, then |XK(A)| ≤ dimk(A).

Proof: The set of algebra homomorphisms XK(A) is contained in the set of
monoid homomorhisms A→ K, and hence is a linearly independent subset
of the K-vector space KA. It is evidently contained in the set Homk(A,K)
of k-linear vector space homomorphisms A → K. But the K-dimension of
this is equal to the k-dimension of A.

Theorem 3 Let A be a finite dimesnsional k-algebra, let ka (resp. ks) be
an algebraic (resp. seperable) closure of k. Then the following conditions
are equivalent.

1. |Xka(A)| = dimk(A).

2. |Xks(A)| = dimk(A).

3. |XK(A)| = dimk(A) for some finite separable extension K of k.

4. |XK(A)| = dimk(A) for some finite Galois extension K of k.

5. The nilradical of A is zero and for each maximal ideal m of A, A/m
is a separable field extensionk.

A finite dimensional k-algebra satisfying the above conditions is said
to be separable over k. Our aim is to classify the category of all the finite
separable k-algebras. For example, if k is algebraically or even just separably
closed, the above theorem tells us that any such algebra is just a finite
product of copies of k.

The result above shows that if A/k is finite and separable, there is a finite
Galois extension K/k such that |XK(A)| = dimk(A). We shall simplify our
problem by fixing a finite Galois extension K/k and just studying those A
for which this equality holds.

Definition 4 Let K/k be a field extension. Then a finite dimensional k-
algebra A is K-split if |XK(A)| = dimk(A).
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In particular K itself is K-split iff G(K/k) := MorAk
(K,K) has cardi-

nality equal to the degree of K over k. Note that this set is a group under
composition, and we denote it by G(K/k). Thus a finite field extension K/k
is Galois iff it is K-split. If K/k is Galois, Grothendieck’s version of Galois
theory establishes an anti-equivalence between the category AK/k of K-split
k-algebras and the category ΣG of finite G-sets.

If A is an object of Ak, let XK(A) := MorAk
(A,K). Note that if s:A→

K and g ∈ G(K/k), then g ◦ s ∈ XK(A). Thus G(K/k) operates naturally
on the left on XK(A). Furthermore, if θ:A→ B is a homomophism in AK/k,
then the induces morphism

XK(θ):XK(B)→ XK(A)

is compatible with the G-actions. Thus we can (and shall) regard XK as
a contravariant functor from the category Ak to the category ΣG of finite
G-sets.

On the other hand, if S is a finite G-set, let

A(S) := MorG(S,K) ⊆ KS

that is, the set of morphisms of G-sets S → K. Note that A(S) is naturally
a k-subalgebra of the k-algebra KS , and that a morphism of G-sets S → T
induces a homomorphismi of k-algebras: cA(T ) → A(S). Thus we can
(and shall) regard A as a contravariant functor from the category ΣG to the
category Ak.

There are natural transformations:

1. For each S ∈ ΣG, a morphism of G-sets:

εS :S → X (A(S)) : εS(s)(a) := a(s)

2. For each A ∈ Ak, a homomorphism of k-algebras:

αA:A→ A(X (A)) : αA(a)(x) := x(a)

Theorem 5 Let the notations be as above.

1. If S is any finite G-set, A(S) is a K=split k-algebra of dimension |S|,
and the map εS is an isomorphism.

2. If A is an object of AK/k, then X (A) has cardinality dimk A, and αA

is an isomorphism.
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Thus the contravariant functors

A: ΣG → AK/k and X :AK/k → ΣG

are mutually inverse equivalences of categories.

For example, if K = k, the theorem asserts that the category of k-split
algebras is antiequivalent to the category of finite sets. Let us check this as
a warmup.

Lemma 6 If S is finite set, the map εS :→ Mor(kS , k) is bijective and kS

has dimension |S|.

Proof: For each s ∈ S, we have an element as ∈ A(S), defined by

as(s
′) :=

{
1 if s′ = s
0 otherwise.

Furthermore, {as : s ∈ S} forms a k-basis of kS , and εS(s)(as) 6= εS(s′)(as)
if s 6= s′. This shows that ε is injective. On the other hand, the dimension
of Homk(A(S), k) is the dimension of A(S), which is the cardinality of S,
and by Corollary 2, the dimension of X (A(S)) is at most the dimension of
A(S), i.e., the cardinality of S. So ε is bijective.

Lemma 7 If A is a K-split k-algebra, the map αA:A → A(XK(A)) is in-
jective.

Proof: It suffices to prove that the map A → KX (A) is injective. Let
I be the kernel. Then every x ∈ X (A) factors through A/I, and hence
X (A) = X (A/I). But dimA = |X| = |X (A/I)| ≤ dim(A/I) so I = 0.

We can now easily prove Theorem 5 when K = k. Statement (1) fol-
lows from Lemma 6. On the other hand, if A ∈ Ak/k, Lemma 7 implies
that αA:A→ A(X (A)) is injective. But X (A) has cardinality dim(A), and
A(X (A)) has the same dimension, so αA is also surjective.

Now let us look at the category of G-sets. If S is a G-set, we denote by
ΓG(S) the set of fixed points of S. Observe next that the category of G-sets
has products: the product of two sets X and Y is the usual set theoretic
product with the action g(x, y) := (gx, gy). It also has an “internal Hom”
construction: If S and T are G-sets, we have a natural action of G on the
set

H(S, T ) := TS
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of functions T → S, by letting

(gφ)(s) := g(φ(g−1s).

With this definition, the usual isomorphism

TX×Y ∼= (T Y )
X

is compatible with the G-actions. Furthermore,

ΓG(TS) = MorG(S, T ),

and hence
MorG(S ×X,T ) ∼= MorG(S, TX).

Finally, observe that if S and T are G-sets and φ ∈ MorG(S ×G,T ), then

φ(s, g) = gφ(g−1s, e).

and if ψ is any function S → T , then

ψ̃(s, g) := gψ(g−1s)

defines a morphism of G-sets S ×G→ T . This gives a bijection

β: MorG(S ×G,T ) ∼= TS

For example, if S is a singleton set, evaluation at the identity of G defines
a bijection:

β: ΓG(TG) ∼= MorG(G,T ) ∼= T.

The inverse of β takes an element t of T to the function g 7→ gt.
The key to our proof is the so-called “Normal basis theorem.” It gives an

explicit description of K viewed as a left G-set. Endow kG with its standard
action as a left G-set. This has a basis {eh : h ∈ G}, where eh(g) = δg,h.
Observe that geh = egh, since geh(h′) = eh(g−1h′) = δh′,gh. Thus we can
also view kG as a the group algebra k[G] with its standard left action of
G. The left G action of G on K, together with its k-vector space structure,
make K a left k[G]-module.

Theorem 8 Let K/k be a finite Galois extension. Then K, viewed as a
left k[G]-module, is free of rank one. Explciitly, there exists an element w
of K such that the map

Fw:G→ K : g 7→ g(w)
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is a k-basis of K. In particular, the corresponding linear map induces an an
isomorphism of k[G]-modules

F̃w: : kG → K.

We defer the proof, proceeding instead to a proof of the main theorem.

Lemma 9 main.l If S is a finite G-set, the map the dimension of A(S) is
|S|, and the map εS :S → X (A(S)) is an isomorphism.

Proof: We use the normal basis theorem to find an isomorphism of k-vector
spaces

A(S) = MorG(S,K) = MorG(S, kG)

But as we have seen,

MorG(S, kG) = MorG(S ×G, k) = kS .

Thus the dimension of A(S) is indeed |S|. To prove that εS is injective, it
suffices to show that the map

ε:S → X (A(S))→ Homk(A(S),K)

is injective. Now if we use the isomorphism provided by the normal basis
theorem to repalce K by kG, the map above becomes identified with the
evaluation map

ε̃:S → Homk(MorG(S, kG), kG).

The map kS → MorG(S, kG) defines a map

Homk(MorG(S, kG), kG)→ Homk(kS , kG).

We find a commuatative diagram:

S
ε̃- Homk(MorG(S, kG), kG))

S
?

- Homk(kS , kG)

?
δe- Homk(kS , k)

where δe is the map induced from the map kG → k “evaluation at e.” Thus
the composed horizontal map along the bottom is the usual evaluation map
appearing in Lemma 6 and in particular is injective. It follows that ε̃ is also
injective, as claimed.
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Lemma ?? proves statement (1) of the theorem. Statement (2) follows
immediately. Indeed, if A is K-split, let X := X (A). Then by the lemma
A(X) has dimesion equal to the cardinality of X, which is the dimension of
A. But the map A→ A(X) is injective, hence bijective, and we are done.

Corollary 10 Let K/k be a finite Galois extension and let A be a finite
K-split k-algebra. Then the natural map

K ⊗A→ KX (A)

is an isomorphism of K-algebras and is compatible with the G-actions, where
G acts trivially on A.

Proof: Then K⊗A is a K-algebra, and dimK(K⊗A) = dimk(A). Further-
more, X (K⊗A) = X (A). It follows that K⊗A is K-split. Furthermore the
map of K-split K-algebras because it induces an isomorphism after applying
X .

Proof of the Normal basis theorem: It is clear that the map Fw is k-linear.
To check that it is compatible with the G-actions, it is enough to check on
the generators. Then

Fw(geh) = Fw(egh) = gh(w) = gFw(eh),

as required.
We prove the existence of w under the assumption that k is infinite. The

map w → Fw is a k-linear map

F :K → Hom(kG,K)

We claim that for some w ∈ K, F (w) is an isomorphism. Let n be the
cardinality of G, and choose an indexing (g1, . . . , gn) of G and a k-basis
(b1, . . . , bn) of K. Using the index of G, we identify kG with kn. Consider
the following diagram:

K
F- Homk(kn,K)

∼= - Kn

kn

β̃

6

i - Kn

γ̃

6

F̃

-
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Here the map β̃ is induced by the basis (b1, . . . , bn) ofK and i is the inclusion.
Let us compute F ◦β̃. If ei is the ith standard basis vector for kn, F (β̃(ei)) =
F (bi), which is the map taking gj to gj(bi). Thus the clockwise map from
kn to Kn sends ei to (g1(bi), . . . , gn(bi)). We can use the same formula to
define F̃ to get the commutative diagram.

Now we claim that F̃ is an isomorphism. It suffices to check that the se-
quence of vectors F̃ (e1), · · · , F̃ (en) is linearly independent over K, i.e., that
the columns of the matrix Aij := gj(bi) are linearly independent. Equiva-
lently, we can check that the rows are linearly independent. Suppose we are
given a sequence (c1, . . . cn) in K such that

∑
j cjgj(bi) = 0 for all i. Then∑

j cjgj = 0 in End(K), and by the linear independence of the characters,
all cj = 0, as required.

It follows that the map γ̃:Kn → Homk(kn,K) is an isomorphism, and in
particular is surjective. But then there is some element w̃ ∈ Kn such that
γ̃(w̃) is an isomorphism kn → K. Now if we identify K with kn again we can
view γ̃ as a linear map from Kn to the set of n×n matrices with coefficients
in k. Then det ◦γ̃ is a polynomial function of the coordinates in Kn, and
we have shown that for some w̃ ∈ Kn, det(γ̃(w̃)) 6= 0. This means that
the polynomial det ◦γ̃ polynomial is not zero. Since kn is infinite, there is a
point x in kn at which it does not vanish. Then Fβ̃(x) is an isomorphism
also, and w := β(x) is the desired element of K.

Here is a proof when k and K are finite. In this case we know that
Gal(K/k) is cyclic, generated by the Frobenius automorphism φ and has
order n, where n is the dimension of K over k. View Thus the group algebra
k[G] is just k[t]/(tn−1), which we view as a quotient of k[t]. ThenK becomes
a k[t]-module. Since k[t] is a PID, K is a direct sum of cyclic modules of
the form k[t]/(gi), where g1|g2|g3 . . .. Since the minimal polynomial of φ is
tn−1, g1 = (tn − 1). But then k[t]/(g1) has dimension n, and there can be
no other factors.

Remark 1 It is easily seen that, under the equivalence of categories pro-
vided by Theorem 5, a G-set S corresponds to a field if and only if the action
of G on S is transitive. More generally, if A ∈ AK/k and s ∈ X (A), Ker(s) is
a prime ideal of A, so there is a natural map X (A)→ SpecA. Furthermore,
if g ∈ G, Ker(gs) = Ker(s), and it is easy to check that the induced map
from the orbit space X (A)/G to SpecA is a bijection.

We can easily deduce a strong form of Hilbert’s theorem 90 from the
above approach. It is most standard to state this in terms of tensor products.
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Theorem 11 Let K/k be a finite Galois extension with group G and let
V be a K-vector space equipped with a semi-linear left action of G. (This
means a G-action such that g(av) = g(a)g(v) for a ∈ K and v ∈ V ). Then
ΓG(V ) is a k-vector subspace of V , and the natural map

K ⊗k ΓG(V )→ V

is an isomorphism.

Proof: Observe that as a consequence of Corollary ??, we get:

Corollary 12 The natural map

K ⊗k K → KG

is an isomorphism of K-algebras, and is compatible with the G-actions,
where G acts trivially on one of the two factors of K ⊗k K.

Now it is clear that the natural map

Ktriv ⊗k ΓG(V )→ ΓG(Ktriv ⊗k V )

is an isomorphism. On the other hand, multipication defines an isomorphism
of K-vector spaces Ktriv⊗K V → Ktriv⊗kV , compatible with the G-actions.
Now using the corollary, we get

Ktriv ⊗k V ∼= KG ⊗K V ∼= V G.

Assembling thse we end up with an isomorphism

Ktriv ⊗k ΓG(V ) ∼= ΓG(V G)

sending a ⊗ v to the function g 7→ g(a)v. As we saw above, evaluation at
the identity element of v defines an isomorphism

ΓG(V G)→ V.

Thus we have a commutative diagram:

Ktriv ⊗k ΓG(V )
∼=- ΓG(V G)

V

∼=

?-

in which the slanted arrow is multiplication. The diagram proves that it is
an isomorphism.

9


