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Recall the following key result:

Theorem 1 (Independence of characters) Let M be a monoid and let
K be a field. Then the set of monoid homomorphisms from M to the
multiplicative monoid of K is a linearly independent subset of the K-vector
space KM,

Proof: 1Tt is enough to prove that if xi,...,xn is a sequence of distinct
homorphisms M — K and ¢y, ..., ¢, is asequence in K such that > ¢;x; = 0,
then each ¢; = 0. We do this by induction on n. If n = 1, we have have
c1 = c1x1(1l) = 0, so ¢; = 0. For the induction step, observe that for any
g,h € M, we have

Cle(g) +-+ Can(g) =0
Cle(gh) +-+ Can(gh) =0

Multiply the first equation by x,(h) and subtract from the second equation
to obtain

cix1(g)(x1(h) = xn(h)) + -+ cn_1Xn-1(9) (Xn-1(h) — Xn(h)) =0
Fixing h and letting g vary, we see that
c1(x1(h) = xa(h))x1 + -+ en—1(xn-1(h) = xn(h))xn-1 = 0.

By the induction assumption, ¢;(z;(h) — xn(h)) =0 for all h and 1 < i < n.
Since x; # Xn if © < n, this implies that ¢; = 0 if i« < n. Then ¢, X, = 0 and
it follows also that ¢, = 0. ]

Now let k be a field and let A denote the category of k-algebras.



Corollary 2 Ifk is a field, if A and K are objects of Ay and K is a field,
then the set
Xk (A) :=Mory, (A, K)

is a linearly independent subset of the K-vector space Homy(A, K). In
particular, if A is finite dimensional, then |Xk(A)| < dimg(A).

Proof: The set of algebra homomorphisms X (A) is contained in the set of
monoid homomorhisms A — K, and hence is a linearly independent subset
of the K-vector space K4. Tt is evidently contained in the set Homy (A, K)
of k-linear vector space homomorphisms A — K. But the K-dimension of
this is equal to the k-dimension of A. O

Theorem 3 Let A be a finite dimesnsional k-algebra, let k® (resp. k®) be
an algebraic (resp. seperable) closure of k. Then the following conditions
are equivalent.

2. | X (A)] = dimy(A).
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5. The nilradical of A is zero and for each maximal ideal m of A, A/m
is a separable field extensionk.

O

A finite dimensional k-algebra satisfying the above conditions is said
to be separable over k. Our aim is to classify the category of all the finite
separable k-algebras. For example, if k is algebraically or even just separably
closed, the above theorem tells us that any such algebra is just a finite
product of copies of k.

The result above shows that if A/k is finite and separable, there is a finite
Galois extension K/k such that |Xx(A)| = dimg(A). We shall simplify our
problem by fixing a finite Galois extension K/k and just studying those A
for which this equality holds.

Definition 4 Let K/k be a field extension. Then a finite dimensional k-
algebra A is K-split if | Xk (A)| = dimg(A).



In particular K itself is K-split iff G(K/k) := Mor 4, (K, K) has cardi-
nality equal to the degree of K over k. Note that this set is a group under
composition, and we denote it by G(K/k). Thus a finite field extension K/k
is Galois iff it is K-split. If K/k is Galois, Grothendieck’s version of Galois
theory establishes an anti-equivalence between the category Ag . of K-split
k-algebras and the category ¥ of finite G-sets.

If A is an object of Ay, let Xx(A) := Mor 4, (4, K). Note that if s: A —
K and g € G(K/k), then go s € Xk (A). Thus G(K/k) operates naturally
on the left on X (A). Furthermore, if §: A — B is a homomophism in Ay,
then the induces morphism

is compatible with the G-actions. Thus we can (and shall) regard Xk as
a contravariant functor from the category Ay to the category X of finite
G-sets.

On the other hand, if S is a finite G-set, let

A(S) := Morg(S,K) C K

that is, the set of morphisms of G-sets S — K. Note that A(S) is naturally
a k-subalgebra of the k-algebra K*°, and that a morphism of G-sets S — T
induces a homomorphismi of k-algebras: cA(T) — A(S). Thus we can
(and shall) regard A as a contravariant functor from the category X to the
category Ay.

There are natural transformations:

1. For each S € X, a morphism of G-sets:

es: S — X (A(S)) : es(s)(a) :== a(s)
2. For each A € A, a homomorphism of k-algebras:

as:A— AX(A)) : aala)(x) := x(a)

Theorem 5 Let the notations be as above.

1. If S is any finite G-set, A(S) is a K =split k-algebra of dimension |S|,
and the map €eg is an isomorphism.

2. If A is an object of Ak, then X(A) has cardinality dimy A, and o s
is an isomorphism.



Thus the contravariant functors
A:Xq — AK/k and X:AK/k — g

are mutually inverse equivalences of categories.

For example, if K = k, the theorem asserts that the category of k-split
algebras is antiequivalent to the category of finite sets. Let us check this as
a warmup.

Lemma 6 If S is finite set, the map egs: — Mor(k®, k) is bijective and k°
has dimension |S]|.

Proof: For each s € S, we have an element as € A(S), defined by

G(S/)Z—{l ifS,:S
s 0 otherwise.

Furthermore, {a, : s € S} forms a k-basis of k%, and eg(s)(as) # es(s)(as)
if s # s'. This shows that € is injective. On the other hand, the dimension
of Homy (A(S), k) is the dimension of A(S), which is the cardinality of S,
and by Corollary 2, the dimension of X'(A(S)) is at most the dimension of
A(S), i.e., the cardinality of S. So € is bijective. O

Lemma 7 If A is a K-split k-algebra, the map as: A — A(Xg(A)) is in-
jective.

Proof: It suffices to prove that the map A — K% ig injective. Let
I be the kernel. Then every x € X(A) factors through A/I, and hence
X(A)=X(A/I). But dim A = | X| = |X(A/I)| <dim(A/I)so I =0. O

We can now easily prove Theorem 5 when K = k. Statement (1) fol-
lows from Lemma 6. On the other hand, if A € Ay, Lemma 7 implies
that ag: A — A(X(A)) is injective. But X'(A) has cardinality dim(A), and
A(X(A)) has the same dimension, so a4 is also surjective.

Now let us look at the category of G-sets. If S is a G-set, we denote by
¢ (S) the set of fixed points of S. Observe next that the category of G-sets
has products: the product of two sets X and Y is the usual set theoretic
product with the action g(z,y) := (gz,gy). It also has an “internal Hom”
construction: If S and T are G-sets, we have a natural action of G on the
set

H(S,T):=T%



of functions T — S, by letting

(90)(s) == g(d(g™"s).
With this definition, the usual isomorphism

TXXY o (TY)X

is compatible with the G-actions. Furthermore,
Ig(T%) = Morg(S, T),
and hence
Morg(S x X, T) = Morg(S, T).
Finally, observe that if S and T" are G-sets and ¢ € Morg(S x G,T), then

¢(57 g) = gd)(g_lS? 6).

and if ¢ is any function S — T', then
b(s,9) = g9~ "s)
defines a morphism of G-sets S x G — T. This gives a bijection
B:Morg(S x G, T) = T°

For example, if S is a singleton set, evaluation at the identity of G defines
a bijection:
B:Tq(T%) = Morg(G,T) = T.

The inverse of 8 takes an element ¢ of T to the function g — gt.

The key to our proof is the so-called “Normal basis theorem.” It gives an
explicit description of K viewed as a left G-set. Endow k¢ with its standard
action as a left G-set. This has a basis {ej, : h € G}, where ey(g) = 0g,p-
Observe that ge, = egp, since gep(h') = ep(g~th') = pr gr. Thus we can
also view k¢ as a the group algebra k[G] with its standard left action of
G. The left G action of G on K, together with its k-vector space structure,
make K a left k[G]-module.

Theorem 8 Let K/k be a finite Galois extension. Then K, viewed as a
left k[G]-module, is free of rank one. Explciitly, there exists an element w
of K such that the map

Fy:G— K :gw— g(w)



is a k-basis of K. In particular, the corresponding linear map induces an an
isomorphism of k[G]-modules

Fw: k¢ = K.
We defer the proof, proceeding instead to a proof of the main theorem.

Lemma 9 main.l If S is a finite G-set, the map the dimension of A(S) is
|S|, and the map eg: S — X (A(S)) is an isomorphism.

Proof: 'We use the normal basis theorem to find an isomorphism of k-vector

spaces
A(S) = Morg(S, K) = Morg(S, k%)

But as we have seen,
Morg(S, k%) = Morg (S x G, k) = k°.

Thus the dimension of A(S) is indeed |S|. To prove that eg is injective, it
suffices to show that the map

e:S — X(A(S)) — Homy(A(S), K)

is injective. Now if we use the isomorphism provided by the normal basis
theorem to repalce K by k©, the map above becomes identified with the

evaluation map
& S — Homy(Morg(S, k%), k).

The map k% — Morg(S, k) defines a map
Homy,(Morg (S, k%), k%) — Homy, (k°, k).

We find a commuatative diagram:

€

s Homy, (Morg(S, k%), k%))

de
S Homy, (K, k) Homy (K%, k)

where 6, is the map induced from the map k¢ — k “evaluation at e.” Thus
the composed horizontal map along the bottom is the usual evaluation map
appearing in Lemma 6 and in particular is injective. It follows that € is also
injective, as claimed. O



Lemma 77 proves statement (1) of the theorem. Statement (2) follows
immediately. Indeed, if A is K-split, let X := X'(A). Then by the lemma
A(X) has dimesion equal to the cardinality of X, which is the dimension of
A. But the map A — A(X) is injective, hence bijective, and we are done.

Corollary 10 Let K/k be a finite Galois extension and let A be a finite
K-split k-algebra. Then the natural map

K®A— K¥YA)

is an isomorphism of K -algebras and is compatible with the G-actions, where
G acts trivially on A.

Proof: Then K®A is a K-algebra, and dimg (K ®A) = dimg(A). Further-
more, X (K ® A) = X(A). It follows that K ® A is K-split. Furthermore the
map of K-split K-algebras because it induces an isomorphism after applying
X.

O

Proof of the Normal basis theorem: It is clear that the map F,, is k-linear.
To check that it is compatible with the G-actions, it is enough to check on
the generators. Then

Fy(gen) = Fw(egh) = gh(w) = gFy(en),

as required.
We prove the existence of w under the assumption that k is infinite. The
map w — F}, is a k-linear map

F: K — Hom(k%, K)

We claim that for some w € K, F(w) is an isomorphism. Let n be the
cardinality of G, and choose an indexing (gi,...,¢g,) of G and a k-basis
(b1,...,b,) of K. Using the index of G, we identify k¢ with k™. Consider
the following diagram:

~Y

F =
K — Homy(k", K) —— K"

B Y i

k”l




Here the map £ is induced by the basis (b1,...,by) of K and i is the inclusion.
Let us compute Fof. If e; is the it" standard basis vector for k&, F(5(e;)) =
F(b;), which is the map taking g; to g;(b;). Thus the clockwise map from
k™ to K™ sends e; to (g1(b;),...,gn(b;)). We can use the same formula to
define F' to get the commutative diagram.

Now we claim that F is an isomorphism. It suffices to check that the se-
quence of vectors F(ey), - - -, F(ey) is linearly independent over K, i.e., that
the columns of the matrix A;; := g;(b;) are linearly independent. Equiva-
lently, we can check that the rows are linearly independent. Suppose we are
given a sequence (ci,...cp) in K such that >, ¢;g;(b;) = 0 for all i. Then
>2j¢igj = 0 in End(K), and by the linear independence of the characters,
all ¢; = 0, as required.

It follows that the map 4: K™ — Homy(k™, K) is an isomorphism, and in
particular is surjective. But then there is some element w € K™ such that
() is an isomorphism k"™ — K. Now if we identify K with k" again we can
view 7 as a linear map from K" to the set of n x n matrices with coefficients
in k. Then det oy is a polynomial function of the coordinates in K", and
we have shown that for some w € K™, det(y(w)) # 0. This means that
the polynomial det oy polynomial is not zero. Since k™ is infinite, there is a
point z in k" at which it does not vanish. Then F3(z) is an isomorphism
also, and w := () is the desired element of K.

Here is a proof when k£ and K are finite. In this case we know that
Gal(K/k) is cyclic, generated by the Frobenius automorphism ¢ and has
order n, where n is the dimension of K over k. View Thus the group algebra
k[G] is just k[t]/(t™—1), which we view as a quotient of k[t]. Then K becomes
a k[t]-module. Since k[t] is a PID, K is a direct sum of cyclic modules of
the form k[t]/(gi), where g1]g2]gs . ... Since the minimal polynomial of ¢ is
t"1 gy = (t" —1). But then k[t]/(g1) has dimension n, and there can be
no other factors. O

Remark 1 It is easily seen that, under the equivalence of categories pro-
vided by Theorem 5, a G-set S corresponds to a field if and only if the action
of G on S is transitive. More generally, if A € Ag/;, and s € X'(4), Ker(s) is
a prime ideal of A, so there is a natural map X'(A) — Spec A. Furthermore,
if g € G, Ker(gs) = Ker(s), and it is easy to check that the induced map
from the orbit space X'(A)/G to Spec A is a bijection.

We can easily deduce a strong form of Hilbert’s theorem 90 from the
above approach. It is most standard to state this in terms of tensor products.



Theorem 11 Let K/k be a finite Galois extension with group G and let
V' be a K-vector space equipped with a semi-linear left action of G. (This
means a G-action such that g(av) = g(a)g(v) for a € K and v € V). Then
I'¢(V) is a k-vector subspace of V', and the natural map

K ®; Fg(V) -V
is an isomorphism.

Proof: Observe that as a consequence of Corollary 77, we get:

Corollary 12 The natural map
K e, K — K¢

is an isomorphism of K-algebras, and is compatible with the G-actions,
where G acts trivially on one of the two factors of K ®j, K.

Now it is clear that the natural map
Ktri'u R FG(V) — FG(KI‘,M@ 2y V)

is an isomorphism. On the other hand, multipication defines an isomorphism
of K-vector spaces Ko Qg V — Kipin ®1 V', compatible with the G-actions.
Now using the corollary, we get

Ktriv Rk V= KG KK V= VG.
Assembling thse we end up with an isomorphism
Kirip @k FG(V) = FG(VG)

sending a ® v to the function g — g(a)v. As we saw above, evaluation at
the identity element of v defines an isomorphism

Lqg(VY = V.

Thus we have a commutative diagram:

Kiriv @ Ta(V) —» Ta(VE)

~

v

in which the slanted arrow is multiplication. The diagram proves that it is
an isomorphism. ]



