
Mathematics 250A Professor A. Ogus

September 20, 2010

Algebra Midterm Exam

Note: There are three problems. Write your answers on the exam, using
both sides of the page if necessary. Use complete sentences and correct
punctuation. You lose points for extraneous statements, especially if they
are incorrect.

1. Let G be a nonabelian group of order 12. Assume G has a normal
subgroup of order 4.

(a) How many 2-Sylow subgroups does G have? Explain.
Solution: The normal subgroup N of order 4 is a 2-Sylow sub-
group. Since all such subgroups are conjugate, there is only one.

(b) How many 3-Sylow subgroups does G have? Explain.
Solution: The number of such groups divides 12/3 = 4 and is
congruent to 1 mod 3, hence is 1 or 4. If there were just one
such group H, it would be normal, and then the elements of H
and N would commute. But both H and N are commutative and
G = HN , so G would also be commutative.

(c) Prove that G is isomorphic to A4.
Solution: The action of G on the set of 3-Sylow subgroups defines
a homomophism θ:G→ S4. The kernel of θ is a normal subgroup
of G and is contained in the intersection of all the normalizers
of the 3-Sylow subgroups, and hence is trivial. This gives an
injection G → S4. But A4 is the unique subgroup of A4 whose
order is 12, so G ∼= A4. Alternatively, we could consider a 3-Sylow
subgroup H and let G act on G/H by translation. This also gives
a homomorphism G → S4, since the index of H is 4. The kernel
of this homomorphism is a normal subgroup G contained in H,
hence is trivial, so the same argument applies. Another possible
approach is to use the fact that G is a semidirect product of N and
H with respect to a nontrivial homomorphism α:H → Aut(N).



If N were cyclic, Aut(N) would be µ2 and there would be no such
α. Hence N = µ2 × µ2, and Aut(N) ∼= S3. Then α is given by an
element of order 3, and any two are conjugate. The same argument
applies to A4 (after some computation of its Sylow structure), so
this could be used to give a proof.

2. Permutations

(a) What is the definition of the group Sn?
Solution: This is the set of bijections from the set {1, . . . , n} to
itself, with composition as the group law.

(b) Write each of the following elements of S9 as a product of disjoint
cycles, say whether it is even or odd, and compute its order. Then
compute the number of its conjugates and describe its centralizer
in S9

i.
(

1 2 3 4 5 6 7 8 9
3 7 8 9 6 4 2 1 5

)

Solution: This is (1 3 8)(2 7)(4 9 5 6). Its order is 12 and
it is even. It has 9!/3 · 2 · 4 conjugates in S9, and hence its
centralizer has order 3 · 2 · 4. It follows that the centralizer
is the product of the cyclic groups generated by each of the
cycles appearing in its decomposition:

〈(1 3 8)〉〈(2 7)〉〈(4 9 5 6)〉.

ii. ( 5 1 ) ( 3 7 ) ( 1 3 5 ) ( 2 6 ) ( 4 8 ) ( 4 9 )

Solution: This is ( 1 7 3 ) ( 2 6 ) ( 4 9 8 ). Its order is
6 and it is odd. It has 9!/3 · 3 · 2 · 2 conjugates, and its cen-
tralizer C has order 36. The centralizer contains the product
of the cyclic groups generated by the cycles in the decompo-
sition, which has order 18. Thus the centralizer is generated
by these cycles as well as one additional element, for example
(1 4)(7 9)(3 8).
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3. Let H and K be subgroups of a finite group G, and let HK denote
the set of all elements of G which can be written as a product hk with
h ∈ H and k ∈ K. Without assuming anything about the normalizers
of H and K, show that |HK||H ∩K| = |H||K|.
Solution: We have a surjective map H ×K → HK, so it suffices to
prove that the inverse image of every g ∈ HK has cardinality |H ∩K|.
In fact h1k1 = h2k2 iff there exists an element g ∈ H ∩ K such that
h2 = h1g

−1 and k2 = gk1, furthermore such an element is unique if
it exists. This shows what we want. A better way to say this: The
group H∩K acts on the left on the set H×K by g(h, k) := (hg−1, gk),
and the fibers of the multiplication map H ×K → HK are the orbits
for this action. Furthermore, the stabilizer subgroups are all trivial, so
the cardinality of the orbits is the cardinality of H ∩K. Yet another
way: Let S denote the set of cosets of K of the form hK;h ∈ H.
Then HK is the union of the elements in S. This is a disjoint union
of sets all of the same cardinality |K|, so |HK| = |S||K|. Moreover,
the group H acts transitively on the set S, so |S| = |H|/|HK |, where
HK := {h ∈ H : hK = K}. Then HK = H ∩K, and the result follows.
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