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Algebra Final Exam Solutions

1. Automorphisms of groups.

(a) Define: the center of a group, an inner automorphism of a group.
Solution: The center of a group G is the set of z ∈ G which
commute with all elements of G. An inner automorphism of G is
an automorphism of the form αh = g 7→ hgh−1 for some h ∈ G.

(b) Prove or disprove that every automorphism of S3 is inner.

Solution: This is true. For every group G we have a natural
map α:G → Aut(G) sending h to αh whose kernel is the center
of G. Since the center of S3 is trivial, this map is injective. Now
every automorphism a of S3 preserves the set of transpositions.
Since there are three transpositions, we get a map Aut(S3)→ S3,
and since these transpositions generate S3, this map is injective.
The composite S3 → S3 must be bijective, hence the map α is
surjective.

(c) Prove or disprove: every automorphism of A4 is inner.
Solution: This is not true. Conjugation by a transposition in
S4 induces an automorphism of A4 which is not inner. This is
because (1 2 3) is not conjugate to (1 3 2) in A4.

2. Give a list of all isomorphism classes of all groups of as described below,
with each isomorphism class occuring exactly once in your list.

(a) The abelian groups of order 36. No proofs needed here.
Solution: Z/36Z, Z/2Z⊕Z18Z, Z/3Z⊕Z/12Z, Z/6Z⊕Z/6Z.

(b) All groups of order 10. Prove your results.
Solution: There are just two, the cyclic group of order 10 and
the dihedral group of order 10. By the Sylow theorems, there is at
least one subgroup of order 5, and clearly there can only be one.
Then it is normal, and we denote it by N . Let H be a subroup of
order 2. If H is normal our group is abelian and necessarily cyclic.



In any case it is a semidirect product, given by the action α of H
on N by conjugation. Now Aut(N) is cyclic of order 4, so has a
unique element of order two, and hence there is just one nontrivial
possibility for this action. This gives the dihedral group.

3. State and prove the theorem on the linear independence of characters.
Solution:

Theorem: Let M be a monoid and let K be a field. Then the set of
monoid homomorphisms from M to the multiplicative monoid of K is
a linearly independent subset of the K-vector space KM .

Proof: It is enough to prove that if χ1, . . . , χn is a sequence of distinct
homorphisms M → K and c1, . . . , cn is a sequence in K such that∑
ciχi = 0, then each ci = 0. We do this by induction on n. If n = 1,

we have c1 = c1χ1(1) = 0, so c1 = 0. For the induction step, observe
that for any g, h ∈M , we have

c1χ1(g) + · · ·+ cnχn(g) = 0
c1χ1(gh) + · · ·+ cnχn(gh) = 0

Multiply the first equation by χn(h) and subtract from the second
equation to obtain

c1χ1(g)(χ1(h)− χn(h)) + · · ·+ cn−1χn−1(g)(χn−1(h)− χn(h)) = 0

Fixing h and letting g vary, we see that

c1(χ1(h)− χn(h))χ1 + · · ·+ cn−1(χn−1(h)− χn(h))χn−1 = 0.

By the induction assumption, ci(xi(h) − χn(h)) = 0 for all h and 1 ≤
i < n. Since χi 6= χn if i < n, this implies that ci = 0 if i < n. Then
cnχn = 0 and it follows also that cn = 0.

4. Let k be a field, let A be a finite dimensional commutative k-algebra,
and let X denote the set of homomorphisms of k-algebras from A to
an algebraic closure K of k.
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(a) Show that the cardinality of X is less than or equal to the k-
dimension of A over k.
Solution: This is because the elements of X define characters
from A to K which must be linearly independent in the K-vector
space Homk(A,K). But theK-dimension of this is the k-dimension
of A.

(b) Define a natural action of the group Aut(K/k) on X, and prove
that the orbits of the action can be naturally identified with the
set of prime ideals of A.
Solution: If g ∈ Aut(K/k) and x ∈ X, we define gx to be
the composite g ◦ x. For each x, Ker x is a prime ideal of A,
and Kerx = Ker gx, so we get a map from the orbit space X to
the set of prime ideals. If P is a prime ideal of A, then A/P is
a finite integral domain, hence a finite field extension of k, and
hence admits an embedding into K. Thus there is an x with
Ker(x) = P . Furthermore, since K/k is normal, any two such
embeddings differ by an automorphis of K/k, so the action of Aut
on the set of all x with a given kernel is transitive.

(c) Define what it means for A to be separable over k. Assuming that
A is separable, prove that it is a field if and only the action of
Aut(K/k) on X is transitive.
Solution: A is separable if its dimension is equal to the cardi-
nality of X. If this is the case and the action of Aut(X/k) is
transitive, there is just one prime ideal P and since the nilradical
of A must vanish, P = 0 and A is a domain.

(d) Give an example to show that this is not true without the sepa-
rability assumption.
Solution: Take A = k[t]/(t2).

5. Compute the degree and the Galois group of the splitting fields of:

(a) X15 + 2 over Q
Solution: The splitting field K contains µ15. Let E be the field
extension of Q obtained by adjointing µ15. This extension has
Galois group (Z/15Z)∗, which has order 8. The extension F ob-
tained by adjoining just one root of the polynomial has degree 15
(since the polynomial is irreducible). Then F ∩E is trivial, and it
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follows that Gal(K/F ) ∼= Ga(E/Q) and hence has degree 8. Then
the degree of K/Q is 15× 8 = 120. We have an exact sequence:

1→ Gal(K/E)→ Gal(KQ)→ Gal(E/Q)→ 1

Furthermore, Gal(K/E) is canonically isomorphic to µ15, a cyclic
group of order 15, and Gal(E/Q) to Aut(µ15

∼= (Z/15Z)∗ ∼=
(Z/5Z)∗ × Z/3Z∗ ∼= Z/4Z × Z/2Z. This is a noncyclic abelian
group of order 8 and is isomorphic to any of the 2-Sylow subgroups
of Gal(K/Q). Choose such a group H. Then G is the semidirect
product of H and Z/15Z. The canonical action of (Z/15Z)∗ on
Z/15Z is the action of H by conjugation, and this determines the
semidirect product.

(b) X3 + 4x+ 2 over Q.
Solution: This polynomial is irreducible by Eisenstein’s criterion.
So the degree of the splitting field is either 3 or 6. On the other
hand, the derivative of this polynomial is 3x2 + 4 which is always
positive, so there is only one real root, hence two complex roots.
Hence the Galois group contains complex conjugation, an element
of order 2. Thus the group has order 6, and hence is S3.

6. Let K/k be a finite Galois extension with group G.

(a) State the normal basis theorem.
Solution: This asserts that there is an element w of K such that
{gw : g ∈ G} is a k-basis of K. In other words, that K is a free
k[G]-module of rank one.

(b) Find a normal basis for the splitting field of the polynomial f(x) :=
x3− x− 1 over the finite field with 3 elements. Explain why your
answer really is a normal basis.
Solution: There are many correct answers. For example, if a is
a root of f , then a2 will be a normal basis. To see this, recall that
the Galois group is cyclic, generated by the Frobenius element φ.
Thus φa = a3 = a+ 1, so

φ(a2) = (a+ 1)2 = a2 + 2a+ 1

φ2(a2) = φ(a2 + 2a+ 1)

= a2 + 2a+ 1 + 2(a+ 1) + 1

= a2 + a+ 2.
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Since (a2, a2 + 2a + 1, a2 + a + 2) is linearly indepedent, we are
done.

(c) Is a root of f a normal basis? Explain.
Solution: No it is not, since the sequence (a, a + 1, a + 2) does
not span K.

7. Let R be a ring and let AR be the category of commutative R-algebras.
Let F :AR → Sets be the forgetful functor from the category AR to
the category of sets.

(a) What is meant by a natural transformation F → F?
Solution: This means a collection of set maps {ηAA → A : A ∈
AR} such that for every homomorphism θ:A→ B, the diagram

A
ηA - A

B

θ

? ηB - B

θ

?

commutes.

(b) Define an R-algebra structure on the set of natural transforma-
tions F → F by using “pointwise” addition and multiplication.
Solution: If α and β are natural transformations, we define
(αA + βA)(a) := αA(a) + βA(a) for all a ∈ A. Then if θ:A → B,
we get

θ(αA + βA)(a) = θ(αA(a) + βA(a))

= θ(αA(a) + θβA(a))

= αB(θ(a)) + βB(θ(a))

= (αB + βB)θ(a)

Thus α + β is a natural transformation. The proof for multipi-
cation is similar. Finally, if r ∈ R, we define a natural transfor-
mation r̂:F → F by letting rA be the constant map sending A to
the image of r in A. This is clearly natural, and r → r̂ is a ring
homomorphism.
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(c) Identify the R-algebra of natural transformations F → F with a
familiar and elementary object in AR. Prove your result. You
need not verify that your isomorphism is compatible with the al-
gebra structures.
Solution: The R-algebra Nat of natural transformations is iso-
morphic to R[x], the polynomial ring in one variable. Indeed, if
f ∈ R[x], we get a natural transformation ηf :F → F by sending
a to f(a). In fact we know that F ∼= HomAR

(R[x], ), and by
Yoneda,

Mor(F, F ) ∼= F (R[x]) = R[x].

It remains to verify that this map is compatible with the algebra
structures.
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