The derivative

February 19

Definition: Let f be a real valued function with domain D and let a be an element of D. Then the derivative of f at a is

$$
f^{\prime}(a):=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow a} \frac{f(a+h)-f(a)}{h} .
$$

The tangent line to f at a is the line passing through the point $(a, f(a))$ and whose slope is $f^{\prime}(a)$.)

It follows from the point-slope formula for the equation of a line that the equation for the function ℓ_{a} defining the tangent line is

$$
\ell_{a}(x)=f^{\prime}(a)(x-a)+f(a) .
$$

(If you have trouble with this formula, just check that this is a line with slope $f^{\prime}(a)$ and that it passses through the point $(a, f(a))$, because $\ell_{a}(a)=f(a)$.

Philosophy: The function ℓ_{a} is the best possible straight line approximation to the function f near $x=a$.

I hope to return to this later. In the meantime, let's discuss the following theorem.

Theorem: Assume that $f^{\prime}(a)$ exists. Then f is continuous at a.
The proof in the book uses the limit theorems for the proof. Let's review this. We begin with a simple algebraic manipulation.

$$
f(x)=\frac{f(x)-f(a)}{x-a}(x-a)+f(a)
$$

Now we apply the limit laws (for sums and products):

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x) & =\lim _{x \rightarrow a}\left(\frac{f(x)-f(a)}{x-a}\right) \lim _{x \rightarrow a}(x-a)+\lim _{x \rightarrow a} f(a) \\
& =f^{\prime}(a) 0+f(a) \\
& =f(a)
\end{aligned}
$$

This tells us exactly that f is continuous at a, as desired.
This situation is so important that it is worthwhile to give an $\epsilon-\delta$ proof, which gives more information which can be quite useful.

We want to prove that given any $\epsilon>0$, there is $\delta>0$ such that

$$
|f(x)-f(a)|<\epsilon \text { for every } x \text { such that }|x-a|<\delta
$$

What we know looks quite different: for any $\epsilon^{\prime}>0$, there is a $\delta^{\prime}>0$ such that

$$
\left|\frac{f(x)-f(a)}{x-a}-f^{\prime}(a)\right|<\epsilon^{\prime} \text { for every } x \text { such that } 0<|x-a|<\delta^{\prime} \mid
$$

What is the relationship between ϵ^{\prime} and ϵ ? Really there isn't one: ϵ is out of our control, and we get to choose any ϵ^{\prime} that is convenient. In class I (as usual) chose $\epsilon^{\prime}=1$. Here let it just be any positive constant. If we multiply both sides of the equation above by the positive number $|x-a|$, we get

$$
\left|f(x)-f(a)-f^{\prime}(a)(x-a)\right| \leq \epsilon^{\prime}|x-a|
$$

for every x such that $0<|x-a|<\delta^{\prime} \mid$. Here I have written \leq instead of $<$, because then the statement will be true even if $|x-a|=0$ (just check both sides). Using the equation of the tangent line, we see the important equation

$$
\left|f(x)-\ell_{a}(x)\right| \leq \epsilon^{\prime}(x-a \mid .
$$

If $\epsilon^{\prime}<1$ this tells us that the difference between the function f and its tangent line is smaller (by a factor of ϵ^{\prime}) than the difference between x and a.

Let's now return to our orginal problem. Let $m:=f^{\prime}(a)$. Given $\epsilon>0$, choose any ϵ^{\prime} you like, then choose δ^{\prime} as above, and then choose

$$
\delta:=\min \left(\delta^{\prime}, \frac{\epsilon}{\left(|m|+\epsilon^{\prime}\right.}\right) .
$$

Suppose that $|x-a|<\delta$. Then $|x-a|<\delta^{\prime}$, and we can use the equations above to conclude that

$$
|f(x)-f(a)-m(x-a)| \leq \epsilon^{\prime}|x-a| .
$$

We compute

$$
\begin{aligned}
|f(x)-f(a)| & =|f(x)-f(a)-m(x-a)+m(x-a)| \\
& \leq|f(x)-f(a)-m(x-a)|+|m(x-a)| \\
& \leq \epsilon^{\prime}|x-a|+|m||x-a| \\
& \leq|x-a|\left(\epsilon^{\prime}+|m|\right) \\
& <\delta\left(\epsilon^{\prime}+|m|\right)
\end{aligned}
$$

Now we use the fact that $\delta \leq \epsilon /\left(\epsilon^{\prime}+|m|\right)$ to conclude that $|f(x)-f(a)|<\epsilon$, as desired. Note that once we have found δ^{\prime}, it is very easy to find δ.

