## Lecture 4-Inverse functions

January 22

Definition Let $f: A \rightarrow B$ be a function.

1. $f$ is surjective (or onto) if for every $b \in B$, there is at least one $a \in A$ such that $f(a)=b$.
2. $f$ is injective (or one-to-one) if $f(a)=f\left(a^{\prime}\right)$ implies $a=a^{\prime}$.

Think about trying to solve the equation $f(x)=y$ : given $y$, find $x$ such that $f(x)=y$. There are two issues:

1. Is there always at least one solution? If so, $f$ is surjective.
2. Is there always at most one solution? If so $f$ is injective.

In the best of all possible worlds, $f$ is both injective and surjective. In this case there is a function which provides the solution.

Definition Let $f: A \rightarrow B$ and $g: B \rightarrow A$ be functions. Then $g$ is inverse to $f$ if both the following hold:

1. For every $b \in B, f(g(b))=b$.
2. For every $a \in A, g(f(a))=a$.

Theorem Let $f: A \rightarrow B$ be a function. Then $f$ has an inverse $g$ if and only if $f$ is injective and surjective. Moreover, in this case $g$ is unique.

If $f$ is injective and surjective, it has a unique inverse $g$, and it is safe to write $f^{-1}$ for this function.

