Lecture 2-Functions

January 22

Review

Definition: Let A and B be sets. A function from A to B is a rule which assigns to each element a of A a specific element of B, often written $f(a)$.

Notation and terminology:

- We usually denote a function by a small letter, such as f.
- We write $f: A \rightarrow B$ to mean that f is a function from A to B.
- We write $a \mapsto b$ if $b=f(a)$.
- If $f: A \rightarrow B$, the set A is called the domain of f and the set B is called the codomain of f. These two sets should be specified as part of the definition of the function f.
- The range of a function $f: A \rightarrow B$ is the set of all elements b of B for which there exists some $a \in A$ such that $b=f(a)$. This is a subset of B in general. Figuring out what this subset is can be difficult.

Sometimes one is given a formula, with or without a description of some context, and asked to figure out the domain of a function on which the formula makes sense in the given context. For example, the formula $\sqrt{x^{2}-9}$ can be used to define a function whose domain is $[-3,3]:=\{x:-3 \leq x \leq 3\}$. However in some contexts, one may want to restrict to a smaller domain, for example, to $[0,3]:=\{x: 0 \leq x \leq 3\}$.

Examples

- Linear functions. Given real numbers m and b one can define a function

$$
f: \mathbf{R} \rightarrow \mathbf{R}: x \mapsto m x+b
$$

The graph of this as a subset of $\mathbf{R} \times \mathbf{R}$ looks like a straight line. Then $b=f(0)$ is the "y-intercept" of the line and m is the "slope." Review the meaning of this: Given any $x_{0} \in \mathbf{R}$, if we compute $b_{0}:=f\left(x_{0}\right)$, then m
will tell us how much f will change if we change x. Precisely, if Δx is the amount we change x_{0}, so that $x_{1}:=x_{0}+\Delta x$, then f changes by $m \Delta x$. Precisely, if $\Delta y:=f\left(x_{1}\right)-f\left(x_{0}\right)$, then

$$
\Delta y=m \Delta x
$$

What makes the graph a straight line is the fact that this equation holds for all x_{0} and all Δx.

- Power functions. Given a natural number n (that is, $n=0,1,2, \ldots$), we can form the function

$$
f_{n}: \mathbf{R} \rightarrow \mathbf{R}: x \mapsto x^{n}
$$

You should know what the graphs of these look like. Note that

$$
\begin{aligned}
& f_{n}(-x)=f_{n}(x) \quad \text { if } n \text { is even } \\
& f_{n}(-x)=-f_{n}(x) \quad \text { if } n \text { is odd }
\end{aligned}
$$

For negative $n, f_{n}(x)$ is only defined if $x \neq 0$:

$$
f_{n}: \mathbf{R} \backslash\{0\} \rightarrow \mathbf{R} .
$$

If r is a rational number, that is, $r=p / q$ where p and q are integers (with $q \neq 0$), one can define f_{r} by doing some work as follows.
Theorem-Definition Let x be a nonnegative real number and let $r:=$ p / q be a rational number. Then there is a unique real number y such that $y^{q}=x^{p}$. By definition, $f_{r}: \mathbf{R}_{\geq} \rightarrow \mathbf{R}_{\geq}$is the function which takes each x to the corresponding y.
In fact, this definition can be extended to work for irrational values of r as well, but it takes some time to carry this out. (One must approximate such values of r by rational ones.)

New functions from old

Definition Let f and g buy two functions from a set A to \mathbf{R}. Then

$$
\begin{aligned}
(f+g): A \rightarrow \mathbf{R} & : \quad a \mapsto f(a)+g(a) \\
(f g): A \rightarrow \mathbf{R} & : \quad a \mapsto f(a) g(a)
\end{aligned}
$$

$f+g$ is called the sum of f and g and $f g$ is called the product of f and g. If f is constant, one can usually figure out the graph of $f+g$ and of $f g$ from the graph of f pretty easily, but in general it takes some thought.

The most important way to combine functions in general is by composition.
Definition Let A, B, and C be sets and let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions, Then $g \circ f$ is the function $A \rightarrow C$ defined by:

$$
g \circ f: A \rightarrow C: a \mapsto g(f(a))
$$

