The Fundamental Theorem of Calculus
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The fundamental theorem of calculus has two parts:

Theorem (Part I). Let f be a continuous function on [a,b] and define a
function ¢: [a,b] — R by

o)== [ 7.

Then g is differentiable on (a,b), and for every x € (a,b),

At the end points, g has a one-sided derivative, and the same formula holds.
That is, the right-handed derivative of g at a is f(a), and the left-handed
derivative of f at bis f(b).

Proof: This proof is surprisingly easy. It just uses the definition of deriva-
tives and the following properties of the integral:

1. If f is continuous on [a,b], then [? f exists.

2. If f is continous on [a,b] and ¢ € [a, b], then

[ =7
3. If m < f < M on [a,b], then

(b—a)mg/abfg(b—a)M.



Let x be a point in (a,b). (We just treat the case of z € (a,b) since
the endpoints can be treated similarly.) If x € (a,b), we shall show that
g (x*) = ¢ (¢7) = f(z). Knowing that the two one-sided derivatives exist
and are equal, we can conclude that the derivative exists and has this value.

By definition,

Property (1) assures us that g is well defined provided that h < b — .
Property (2) allows us to simplify the numerator, since it implies that

garm =gy = [T r- =T )

This is already great, since we only need to worry about f over the small
interval [z, x + h|. A picture is helpful here, but I don’t have time to include
one in thise notes. Draw one yourself.

Now recall the definition of a limit. We have to show that given any
€ > 0, there is a § > 0 such that

gle +h) —g(x)

LI pw)| < @

whenever 0 < h < §. This is where we use the continuity of f at . We know
from this that there is a § such that |f(z") — f(z)| < € whenever |2’ — x| < 6.
This means that

fl@) —e< f(a) < fz) +e
for all such 2. We use this same § our criterion for the limit in equation (2).
Let us verify that this works. Suppose that 0 < h < §. Then on the interval
[z, x4+ h], we know that f is between f(x)—e€ and f(x)+ e. By property (3)
of integrals, it follows that

x+h
(f@)=oh< [ f < (f@)+oh
Since h > 0, we can divide both sides by h to conclude that
z+h
fa)—e<Un[ P i@ e e

(z +h) — g(x)
h

fla)y—e<? < fx)+e
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This is exactly what we needed.
The left handed derivatives are done in essentially the same way.
m

Theorem (Part II). Let f be a continuous function on [a,b]. Suppose
that F' is continuous on [a,b] and that F" = f on (a,b). Then

/abf — F(b) — Fla).

Proof: Consider the function ¢ in the previous theorem. Since g is differ-
entiable on [a,b] it is continuous there (including at the end points, where
the one-sided deritaives exist). We also know that g and F' are differentiable
on (a,b), and that there derivatives are equal. Recall that we had (as a
consequence of the mean value theorem for derivatives) that F' and g differ
by a constant. That is, there is a number C such that g(x) = F(x) for all
x € |a,b]. Then

F(8) ~ Fla) = (400) + C) ~ (g() + C) =) ~gl) = [ 7~ ["1= s
[]



