The tangent approximation

March 10

Let f be a function of f. Suppose that we can calculate $f(a)$ and $f^{\prime}(a)$. Then the tangent line to the graph of f at a is the line passing through the point ($a, f(a)$) whose slope is $f^{\prime}(a)$. It is given by the formula

$$
\ell_{a}(x)=f^{\prime}(a)(x-a)+f(a) .
$$

It is a theorem that this is the line which best approximates f near a. Although we won't try to say exactly what this means, we will explain how well it does approximate f. The key point is that, for x near a, the difference between $f(x)$ and $\ell_{a}(x)$ is small even compared to $|x-a|$.

As a simple example, consider the function $f(x)=x^{2}$. Then $f^{\prime}(a)=2 a$ and $\ell_{a}(x)=2 a(x-a)+a^{2}=2 a x-a^{2}$. The point is, if we already know a^{2}, this is easier to compute than x^{2} and is supposed to be near to x^{2} if x is near a. How near? We can compute the difference:

$$
\mid f(x)-\ell_{a}\left(x \left|=\left|x^{2}-2 a x+a^{2}\right|=|x-a|^{2}\right.\right.
$$

Note that if $|x-a|<1$, this is small even compared to $|x-a|$.
Here is a precise statement.
Theorem: Suppose that $f^{\prime}(a)$ exists. Then for every $\epsilon>0$, there exists a $\delta>0$ such that

$$
\left|f(x)-\ell_{a}(x)\right| \leq \epsilon|x-a|
$$

whenever $|x-a|<\delta$.
For example, if ϵ is chosen to be .01 , the error caused by using $\ell_{a}(x)$ in place of $f(x)$, will be at most 1% of the the difference between x and a.

Proof: From the definition of derivative:

$$
f^{\prime}(a):=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} .
$$

By the definition of a limit, we can find $\delta>0$ such that

$$
\left|\frac{f(x)-f(a)}{x-a}-f^{\prime}(a)\right|<\epsilon
$$

whenever $0<|x-a|<\delta$. Now multiply both sides by the positive number $|x-a|$ to see that

$$
\left|f(x)-f(a)-f^{\prime}(a)(x-a)\right|<\epsilon|x-a|
$$

whenever $0<|x-a|<\delta$. Note that both sides vanish when $x=a$, so if we replace the "less than" sign by a "less than or equal" sign, the statements remains true for all x with $|x-a|<\delta$. Now if we substitute in the definition of $\ell_{a}(x)$, we see that

$$
\left|f(x)-\ell_{a}(x)\right| \leq \epsilon|x-a|
$$

whenever $|x-a|<\delta$. This proves the theorem.
Let's work out an example. Let $f(x)=\sqrt{x}$, for $x>0$. Then if $a>0$, $f^{\prime}(a)=1 / 2 a^{-1 / 2}$, so $\ell_{a}(x)=(x-a) / 2 \sqrt{a}+\sqrt{a}$. Let's see if, given ϵ we can find δ that works in the above argument. In the calculations below, we shall frequently use our old friend: $A^{2}-B^{2}=(A+B)(A-B)$.

$$
\begin{aligned}
\left|f(x)-\ell_{a}(x)\right| & =\left|\sqrt{x}-\sqrt{a}-\frac{(x-a)}{2 \sqrt{a}}\right| \\
& =\left|(\sqrt{x}-\sqrt{a})\left(1-\frac{\sqrt{x}+\sqrt{a}}{2 \sqrt{a}}\right)\right| \\
& =\left|\frac{x-a}{\sqrt{x}+\sqrt{a}}\left(\frac{\sqrt{a}-\sqrt{x}}{2 \sqrt{a}}\right)\right| \\
& =\left|\frac{(x-a)^{2}}{(\sqrt{x}+\sqrt{a})^{2} 2 \sqrt{a}}\right|
\end{aligned}
$$

This is still pretty messy. We don't have to be very clever to get something useful and simple however. Since \sqrt{x} is positive, if we omit it from the denominator we will get something bigger. So we conclude:

$$
\left|f(x)-\ell_{a}(x)\right| \leq\left|\frac{(x-a)^{2}}{2(\sqrt{a})^{3}}\right|
$$

In our example, $a=25$, and so $\sqrt{a}=5$ and $\sqrt{a}^{3}=125$, so we get

$$
\left|f(x)-\ell_{25}(x)\right| \leq\left|\frac{(x-25)^{2}}{250}\right|=|x-25|\left|\frac{x-25}{250}\right|
$$

Conclusion: if we take $\delta:=250 \epsilon$, then if $|x-25|<\delta$,

$$
\left|f(x)-\ell_{a}(x)\right| \leq \epsilon|x-a| .
$$

Thus this ϵ is a bound for the relative error

$$
\rho:=\frac{\left|f(x)-\ell_{a}(x)\right|}{|x-a|}
$$

(which makes sense only if $x \neq a$).
Let's look at some values. The estimates we just did predict that the relative error ρ is bounded by $.004|x-25|$. Since it is impossible to actually write down $f(x)$ exactly, I have written $\tilde{f}(x)$ to indicate the approximation given by my calculator.

x	$x-a$	$\ell_{a}(x)$	$\tilde{f}(x)$	ρ	$.004\|x-a\|$
25	0	5	5		
26	1	5.1	5.099019513592784	$0.980486407216 \mathrm{E}-3$	$4 \mathrm{E}-3$
24	-1	4.9	4.898979485566356	$01.020514433644 \mathrm{E}-3$	$4 \mathrm{E}-3$
25.1	.1	5.01	5.009990019950139	$0.9980049861 \mathrm{E}-4$	$4 \mathrm{E}-4$
24.9	-.1	4.99	4.9899899799498590	$1.0020050141 \mathrm{E}-4$	$4 \mathrm{E}-4$
25.001	.001	5.0001	5.00009999900002	$0.99998 \mathrm{E}-6$	$4 \mathrm{E}-6$

I should mention another set of conventions that you will find in our book and often other places as well. To introduce it, we first write let $h:=x-a$. Then our expression becomes

$$
f(a+h) \sim f^{\prime}(a) h+f(a)
$$

or better:

$$
f(a+h)-f(a) \sim f^{\prime}(a) h
$$

This is useful because h is small, and the expression displays clearly how our approximation depends on this small number h.

We could also write Δx in place of h. Note that a could be anything, and could even be regarded as a "variable." In fact to emphasize this, people tend
to write x in place of a. Then our goal is to approximate $f(x+\Delta x)-f(x)$. Here is the standard definition, using the language of "differentials," in which we now write $d x$ in place of Δx.

Definition: Suppose f is differentiable. For any x in the domain of f and any real number $d x$,

$$
d y:=f^{\prime}(x) d x \text { and } \Delta y:=f(x+d x)-f(x)
$$

Our theorem then says that $d y$ is very near to Δy if $d x$ is small. In fact, the difference between $d y$ and Δy is small even compared to $d x$.

