Math 1A - UCB, Spring 2010 - A. Ogus Solutions ${ }^{1}$ for Problem Set 8

§3.7 \#18. If a tank holds 5000 gallons of water which drains from the bottom of the tank in 40 minutes, the volume remaining in the tank after t minutes is $V=5000\left(1-\frac{t}{40}\right)^{2}$.
Solution. The rate at which the water is draining is $V^{\prime}(t)=2 \cdot 5000\left(1-\frac{t}{40}\right)\left(-\frac{1}{40}\right)=-250\left(1-\frac{t}{40}\right)$.
(a) $V^{\prime}(5)=-250\left(1-\frac{1}{8}\right)=-\frac{7}{8} 250$.
(b) $V^{\prime}(10)=-250\left(1-\frac{1}{4}\right)=-\frac{3}{4} 250$.
(c) $V^{\prime}(20)=-250\left(1-\frac{1}{2}\right)=-\frac{1}{2} 250$
(d) $V^{\prime}(40)=-250\left(1-\frac{40}{40}\right)=0$

The water is coming out the fastest, when $\left|V^{\prime}(t)\right|$ is largest, which is when $\frac{t}{40}$ is smallest. Thus we conclude that the water is coming out fastest at the beginning. The more time goes by the slower the water comes out, until it stops at time 40.
$\S 3.7 \mathbf{\# 2 8}$. The frequency of vibrations of a vibrating violin string is given by $f=\frac{1}{2 L} \sqrt{\frac{T}{\rho}}$.
Solution. (a) $\frac{d f}{d L}=-\frac{1}{2} L^{-2} \sqrt{\frac{T}{\rho}}$.
$\frac{d f}{d T}=\frac{1}{2 L} \frac{1}{2 \sqrt{\frac{T}{\rho}}} \frac{1}{\rho}$
$\frac{d f}{d \rho}=-\frac{1}{2 L} \frac{1}{2 \sqrt{\frac{T}{\rho}}} \frac{T}{\rho^{2}}$
(b) The derivative $\frac{d f}{d L}$ is negative, hence the graph $f(L)$ is decreasing. If we decrease the length of the string, the frequency and hence the pitch is higher.
The derivative $\frac{d f}{d T}$ is positive, since L, ρ are positive. Hence the graph $f(T)$ is increasing. Thus, if the tension is increased, then also the pitch increases.
The derivative $\frac{d f}{d \rho}$ is negative, hence the graph $f(\rho)$ is decreasing. Thus is the linear density is increased, the pitch decreases.
§3.7 $\#$ 31. If $p(x)$ is the total value of the production when there are x workers in a plant, then the average productivity of the workforce at the plant is $A(x)=\frac{p(x)}{x}$.
Solution. $A^{\prime}(x)=\frac{x p^{\prime}(x)-p(x)}{x^{2}} . A^{\prime}(x)>0$ iff $\frac{x p^{\prime}(x)-p(x)}{x^{2}}>0$ iff $x p^{\prime}(x)-p(x)>0$ iff $p^{\prime}(x)>\frac{p(x)}{x}$.
§3.8 \# 3(a). A bacteria culture initially contains 100 cells and grows at a rate proportional to its size. After an hour the population has increased to 420 . Find an expression for the number of bacteria after t hours.
Solution. The problem tells us that if P is the population, then $d P / d t=k P$, where k is some fixed number. This is a differential equation with solution $P(t)=P_{0} e^{k t}$, where $P_{0}=100$, the initial population. Since we know $420=P(1)=100 e^{k(1)}$, we see that $k=\ln (420 / 100)$, and so our answer is $P(t)=100 e^{\ln (420 / 100) t}=100(4.2)^{t}$.
§3.8 \# 3(c)). Find the rate of growth after 3 hours.
Solution. The rate of growth is just $d P / d t$, and we already know $d P / d t=k P=\ln (4.2) P$. At $t=3$ hours, we know (from part (a)) that $P(3)=100(4.2)^{3}$, so $d P / d t=100(4.2)^{3} \ln (4.2) \approx 10,632$ bacteria/hour.

[^0]$\S 3.8$ \# 8(a). Bismuth-210 has a half-life of 5.0 days. A sample originally has a mass of 800 mg . Find a formula for the mass remaining after t days.
Solution. We know this is an example of exponential decay, so $m(t)=m_{0} e^{k t}$, where $m_{0}=800$ mg , the staring mass, and k is a constant to be determined. Since we know the half-life is 5.0 days, $m(5)=800 e^{5 k}=(1 / 2) m_{0}=400$, so $e^{5 k}=1 / 2$, and $5 k=\ln (1 / 2)$, so $k=-(1 / 5) \ln (2)$. Then $m(t)=800 e^{-(1 / 5) \ln (2) t}=8002^{-t / 5}$.
§3.8 \# 8(b). Find the mass remaining after 30 days.
Solution. This is just $m(30)=8002^{-30 / 5}=12.5 \mathrm{mg}$.
§3.8 \# 8(c). When is the mass reduced to 1 mg ?
Solution. We want to find the time t when $m(t)=1$. So, $1=8002^{-t / 5}$, then $\log _{2}(1 / 800)=-t / 5$, so $t=-5 \log _{2}(1 / 800)=5 \log _{2}(800) \approx 48.2$ days.
§3.8 \# 15(a). When a cold drink is taken from a refrigerator, its temperature is $5^{\circ} \mathrm{C}$. After 25 minutes in a $20^{\circ} \mathrm{C}$ room its temperature has increased to $10^{\circ} \mathrm{C}$. What is the temperature of the drunk after 50 minutes?
Solution. The surrounding temperature is $20^{\circ} \mathrm{C}$, so if $T(t)$ is the temperature of the drink at time t, let $y(t)=T(t)-20$. Then Newton's Law of Cooling says that $y(t)=y_{0} e^{k t}$ for some constant k, where $y_{0}=T(0)-20=5-20=-15$. We know $-15 e^{k(25)}=y(25)=10-20=-10$, so $e^{k(25)}=2 / 3$ and $25 k=\ln (2 / 3)$, so $k=(1 / 25) \ln (2 / 3)$. Then finally $T(t)=y(t)+20=-15 e^{(1 / 25) \ln (2 / 3) t}+20=$ $20-15(2 / 3)^{t / 25}$. The problem asks for $T(50)=20-15(2 / 3)^{50 / 25}=13.3^{\circ} \mathrm{C}$.
§3.8 \# 19(a). If $\$ 3000$ is invested at 5% interest, find the value of the investment at the end of 5 years if the interest is compounded (i) annually, (ii) semiannually, (iii) monthly, (iv) weekly, (v) daily, and (vi) continuously.
Solution. The formula for compounded interest gives the value at time t given by $A(t)=A_{0}(1+r / n)^{n t}$ where r is the rate, t is time (in years), and n is the number of times per year it is compounded. Here $A_{0}=\$ 3000$ and $r=0.05$, so: (i) $A(t)=3000(1+0.05)^{5}=3828.84$, (ii) $A(t)=3000(1+0.05 / 2)^{10}=$ 3840.25 , (iii) $A(t)=3000(1+0.05 / 12)^{60}=2850.08$, (iv) $A(t)=3000(1+0.05 / 52)^{260}=3851.61$, (v) $A(t)=3000(1+0.05 / 365)^{1575}=3852.01$, (vi) $A(t)=3000 e^{(0.05) 5}=3852.08$.
$\S 3.9$ \# 13. A street light is mounted at the top of a 15 - ft -tall pole. A man 6 ft tall walks away from the pole with a speed of $5 \mathrm{ft} / \mathrm{s}$ along a straight path. How fast is the tip of his shadow moving when he is 40 ft from the pole?
Solution. Use similar triangles. Let d be the distance between the man and the pole and let x be the length of the man's shadow. Then $x /(d+x)=6 / 15$, so $15 x=6 x+6 d$ and $9 x=6 d$. Then $x=(2 / 3) d$. The problem wants us to find $d(d+x) / d t=d(d) / d x+d x / d t$, since this is the speed of the tip of his shadow. We know $d x / d t=(2 / 3) d(d) / d t$ and we know $d(d) / d t=5 \mathrm{ft} / \mathrm{s}$, from the problem. Then $d(d+x) / d t=(5 / 3) d(d) / d t=25 / 3 \mathrm{ft} / \mathrm{s}$.
§3.9 \# 18(a). A baseball diamond is a square with side 90 ft . A batter hits the ball and runs toward first base with a speed of $24 \mathrm{ft} / \mathrm{s}$. At what rate is his distance from second base decreasing when he is halfway to first base?
Solution. His distance from second base as a function of t is $d(t)=\sqrt{90^{2}+(90-24 t)^{2}}$ by the Pythagorean theorem. Then $d^{\prime}(t)=(1 / 2)\left(8100+(90-24 t)^{2}\right)^{-1 / 2}(2(90-24 t))(-24)=-24(90-$ $24 t)\left(8100+(90-24 t)^{2}\right)^{-1 / 2}$. He is halfway to first base when $24 t=90 / 2=45$, so when $t=45 / 24=$ $15 / 8$. Then $d^{\prime}(15 / 8)=-10.7 \mathrm{ft} / \mathrm{s}$.
§3.9 \# 18(b). At what rate is his distance from third base increasing at the same moment?
Solution. His distance from second base as a function of t is $d(t)=\sqrt{90^{2}+(24 t)^{2}}$ by the Pythagorean theorem, again. So $d^{\prime}(t)=(1 / 2)\left(8100+(24 t)^{2}\right)^{-1 / 2}(2(24 t)(24))$ and $d^{\prime}(15 / 8)=10.7 \mathrm{ft} / \mathrm{s}$. Geometrically, this makes sense. He should be moving away from third base at the same speed he is moving toward first base.
§3.9 \# 24. A trough is 10 ft long and its ends have the shape of isosceles triangles that are 3 ft across at the top and have a height of 1 ft . If the trough is being filled with water at a rate of 12 $\mathrm{ft}^{3} / \mathrm{min}$, how fast is the water level rising when the water is 6 inches deep?
Solution. Let $V(t)$ denote the volume of water in the trough at time t. If the height of water at time t is $h(t)$, then the cross-sectional area of filled water is an isosceles triangle with height $h(t)$, and base $h(t)(3 / 1)=3 h(t)$ by similar triangles, so it has area $(3 / 2) h(t)^{2}$. Then $V(t)=10(3 / 2) h(t)^{2}=15 h(t)^{2}$. So $V^{\prime}(t)=30 h(t) h^{\prime}(t)$. If t_{0} is the time when the water is 6 inches deep, $h\left(t_{0}\right)=1 / 2$, since we measure al distances in ft. The problem also tells us that $V^{\prime}\left(t_{0}\right)=12 \mathrm{ft}^{3} / \mathrm{min}$. Then $12=30(1 / 2) h^{\prime}\left(t_{0}\right)$, so $h^{\prime}\left(t_{0}\right)=12 / 15 \mathrm{ft} / \mathrm{min}$, and this is the rate at which the water level is rising when the water is 6 inches deep.
§3.9 \# 36. Two carts, A and B, are connected by a rope 39 ft long that passes over a pulley P. The point Q is on the floor 12 ft directly beneath P and between the carts. Cart A is being pulled away from Q at a speed of $2 \mathrm{ft} / \mathrm{s}$. How fast is cart B moving toward Q at the instant when cart A is 5 ft from Q ?
Solution. Let $x(t)$ be the position of A with respect to Q and $y(t)$ be the position of B, where right is positive. The Pythagorean theorem tells us that $\sqrt{x^{2}+12^{2}}+\sqrt{y^{2}+12^{2}}=39$, since the length of the rope is 39 ft . We can differentiate this with respect to t and obtain $(1 / 2)\left(x^{2}+12^{2}\right)^{-1 / 2}\left(2 x x^{\prime}\right)+$ $(1 / 2)\left(y^{2}+12^{2}\right)^{-1 / 2}\left(2 y y^{\prime}\right)=0$. When cart A is 5 ft from $Q, x=-5$. and $x^{\prime}=-2$. Furthermore, $y=\sqrt{532} \approx 23.1$ by solving for y above, so $y^{\prime}=-(1 / 2)\left(x^{2}+12^{2}\right)^{-1 / 2}\left(2 x x^{\prime}\right) /\left[y\left(y^{2}+12^{2}\right)^{-1 / 2}\right]=-0.87$ ft / s.
§3.9 \# 44. The minute hand on a watch is 8 mm long and the hour hand is 4 mm long. How fast is the distance between the tips of the hands changing at one o'clock?
Solution. Let $\theta(t)$ (t in hours) be the angle of the hour hand (so for $12 \mathrm{AM} / \mathrm{PM}, \theta=\pi / 2$ and $\psi(t)$ be the angle of the minute hand. The coordinates of the tip of the minute hand are ($8 \cos \psi, 8 \sin \psi$) and the coordinates of the tip of the hour hand are $(4 \cos \theta, 4 \sin \theta)$, so the distance between them is $d=\sqrt{(8 \cos \psi-4 \cos \theta)^{2}+(8 \sin \psi-4 \sin \theta)^{2}}$. Then $d(d) / d t=\left[(8 \cos \psi-4 \cos \theta)^{2}+(8 \sin \psi-\right.$ $\left.4 \sin \theta)^{2}\right]^{-1 / 2}\left[2(8 \cos \psi-4 \cos \theta)\left(-8 \sin \psi \psi^{\prime}+4 \sin \theta \theta^{\prime}\right)+2(8 \sin \psi-4 \sin \theta)\left(8 \cos \psi \psi^{\prime}-4 \cos \theta \theta^{\prime}\right)\right.$ and we know at 1 o'clock, $\theta=\pi / 6, \psi=\pi / 2, \theta^{\prime}=2 \pi / 12, \psi^{\prime}=2 \pi / 1$. We can substitute this in, so $d(d) / d t=63.2 \mathrm{~mm} / \mathrm{hr}$.
§3.10 \#2 Find the linearization of $f(x)=\ln x$ at $a=1$.
Solution. $f^{\prime}(x)=1 / x$, so $f^{\prime}(a)=1$. Since $f(a)=0$, the linearization is given by $\ell_{a}(x)=x$.
§3.10 \#34 The radius of a circular disk is given as 24 cm with a maximum error in measurement of .2 cm .
(a) Use differentials to estimate th maximum error in the calculated area of the disk.

Solution. The area is given by $A=\pi r^{2}$, and the differential $d A=2 \pi r d r$. So if $d r=.2, d A=$ $2 \pi 24.2=9.6 \pi$ square centimeters.
(b) The relative error is $d A / A$ which is $2 \pi r d r / \pi r^{2}=2 d r / r=2(.2) / 24=1 / 60$, or $.0167 \%$.

[^0]: ${ }^{1}$ © 2009 by Michael Christ. modified by A. Ogus All rights reserved.

