
Math 1A — UCB, Spring 2010 — A. Ogus
Solutions1 for Problem Set 6

§3.1 # 2(b). What types of functions are ex and xe? Compare their derivatives.

Solution. ex is an exponential function; xe is a power function. Their derivatives are respectively
ex, and exe−1. �

§3.1 # 2(c). Which of ex and xe grows more rapidly as x→∞?

Solution. ex grows far, far more rapidly. ex+1 = e · ex > 2ex for every x, so ex more than doubles
every time x passes from one integer n to n + 1. In contrast, xe doubles when x is multiplied by a
factor r, where re = 2. (Then (rx)e = xe · re = 2.) Clearly the former type of growth wins out in the
long run. �

§3.1 # 35. Find the equation of the tangent and normal lines to the curve y = x4 + 2ex at (0, 2).

Solution. dy
dx = 4x3 + 2ex, so at (0, 2), the slope of the tangent line is 4 · 03 + 2e0 = 2. An equation

for the tangent line is therefore y = 2(x− 0) + 2 = 2x+ 2.

The normal line is the unique line through (0, 2) which is perpendicular to the tangent lines. Two
lines are perpendicular if and only if the product of their slopes is −1 (unless one is horizontal and
the other, vertical). Thus in this case, the slope of the normal line is −1

2 , so an equation for the

normal is y = −1
2(x− 0) + 2 = −1

2x+ 2. �

§3.1 # 50(a). The equation of motion of a particle is s = 2t3 − 7t2 + 4t + 1, where s is measured
in meters and t in seconds. Find the velocity and acceleration as functions of t.

Solution. The velocity is v = ds
dt = 6t2 − 14t+ 4, and the acceleration is a = dv

dt = 12t− 14. �

§3.1 # 50(b). Find the acceleration after 1 second.

Solution. Plug in t = 1 to obtain a = 12− 14 = −2. (The physical interpretation is that the particle
is slowing down at this instant in time; its velocity is decreasing as time increases.) �

§3.1 # 51. Find all points on the curve y = 2x3 + 3x2−12x+ 1 where the tangent line is horizontal.

Solution. dy
dx = 6x2 + 6x − 12. The tangent line is horizontal exactly where dy

dx = 0. We have

6x2 + 6x− 12 = 6(x2 + x− 1) = 6(x+ 2)(x− 1), which vanishes if and only if x = −2 or x = 1. Thus
there are two points with horizontal tangents: (1,−6), and (−2, 21).

§3.1 #62(a). Find the n-th derivative of f(x) = xn by calculating the first few derivatives, and
observing the pattern.

Solution. f ′(x) = nxn−1, f ′′(x) = n(n− 1)xn−2, and f (3)(x) = n(n− 1)(n− 2)xn−3. Thus the k-th

derivative of f is f (k)(x) = n(n− 1)(n− 2) · · · (n− k+ 1)xn−k. For k = n, x is raised to the power 0,
and we get

f (n)(x) = n!;

f (n) is this constant function. �

§3.1 #62(b). Find the n-th derivative of f(x) = 1/x by calculating the first few derivatives, and
observing the pattern.

Solution. Write f(x) = x−1. f ′(x) = −x−1, f ′′(x) = +x−2, f (3)(x) = −2x−3, f (4)(x) = 2 · 3 · x−4,
f (5)(x) = −2 · 3 · ·4x−5. Thus

f (n)(x) = (−1)n2 · 3 · ·4 · · · (n− 1)x−n−1. = (−1)n(n− 1)!x−n−1.
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§3.2 #18. Differentiate y = 1
s+kes .

Solution. Although this is not stated, our author intends us to calculate the derivative of y with
respect to s, not with respect to k, which often stands for a constant (or konstant) in various appli-
cations to physical science.

Using the quotient rule,

dy

ds
=

0− d(s+kes)
ds

(s+ kes)2
= − 1 + kes

(s+ kes)2
= −(1 + kes)(s+ kes)−2.

�

§3.2 #32. Find an equation for the line tangent to the curve y = ex/x at (1, e).

Solution. Writing y = x−1ex, the derivative is

dy

dx
= −x−2ex + x−1ex.

There are various ways to write the derivative; this one is fine for what we need to do next. Now
plug in x = 1 to find that the slope of the tangent line at (1, e) equals −1 · e1 + 1 · e1 = 0. Thus an
equation of the tangent line is y = 0(x− 1) + e, or more simply, y = e. �

§3.3 #10. Differentiate y = 1+sin(x)
x+cos(x) .

Solution. y = f(x)
g(x) where f(x) = 1 + sin(x) and g(x) = x + cos(x). Thus f ′(x) = cos(x), while

g′(x) = x− sin(x). Therefore

dy

dx
=
f ′g − fg′

g2
=

cos(x)(x+ cos(x))− (1 + sin(x))(x− sin(x))

(x+ cos(x))2

I see now way to dramatically simplify this, so I’ll leave it in this form. �

§3.3 #24. Find an equation of the line tangent to the graph of y = (sin(x) + cos(x))−1 at the point
(0, 1).

Solution.

dy

dx
= −(cos(x)− sin(x)) · (sin(x) + cos(x))−2 = (sin(x)− cos(x))(sin(x) + cos(x))−2.

Plugging in x = 0 gives
dy

dx

∣∣∣
x=0

= (0− 1)(0 + 1)−2 = −1.

An equation for the tangent line is

y = −1 · (x− 0) + 1 = −x+ 1.

�

§3.3 # 37. A ladder 10 feet long leans against a vertical wall. Let θ be the angle between the top
of the ladder and the wall, and let x be the distance from the bottom of the ladder to the wall, also
measured in feet. If the bottom of the ladder slides away from the wall, how fast does x change with
respect to θ when θ = π/3?

Solution. (There is another variable in this problem, time. However, we are not asked how fast x
or θ change with respect to time. Nor can we answer that question; nothing indicates whether the
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ladder slides quickly (as it would if the floor were greased), or slowly (as it could if the floor were
coated with tar).)

By examining the right triangle formed by the ladder, wall, and floor, we find that tan(θ) = x/10.
Take the derivatives of both sides with respect to x:

1

10

dx

dθ
=

d

dθ
(tan(θ)) = sec2(θ).

Thus dx
dθ = 10 sec2(θ). Since cos(π/3) = 1

2 , sec2(π/3) = 4, so dx
dθ = 40 when θ = π/3. �

§3.3 # 51. (Please refer to figure in text, page 197.) The figure shows a circular arc of length s and
a central chord of length d, both subtended by a central angle θ. Find limθ→0+

s
d .

Solution. Assume that the circle has radius 1. (If it does not, then we may scale the picture by a
factor of one over the radius. This changes neither the ratio s/d, nor the angle θ.)

Now θ = s, since the arc has length s and the circle has radius 1. (We always measure our angles in
radians.) What is d? We could use the law of cosines; or we can simply observe that by drawing the
line which passes through the center of the circle and bisects the chord, d

2 = sin(θ/2); d = 2 sin(θ/2).
Thus

lim
θ→0+

s

d
= lim

θ→0+

θ

2 sin(θ/2)
= lim

θ→0+

θ/2

sin(θ/2)
= 1

(by substituting t = θ/2; t→ 0+ as θ → 0+). �
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