Math 1A - UCB, Fall 2010 - A. Ogus
 Solutions ${ }^{1}$ for Problem Set 1

$\S 1.1 \# 6$. Determine whether the curve is a graph of a function of x. If it is, state the domain and range of the function.
The curve is a function since it passes the vertical line test. The domain is $[-2,2]$. The range is $[-1,2]$.
§1.1 \# 14. Sketch a rough graph of the market value of a new car as a function of time for a period of 20 years. Assume the car is well maintained.
Sketches will vary. The graph should start high and then go down over time. Here is a possible example:

§1.1 \# 18. An airplane takes off from an airport and lands an hour later at another airport, 400 miles away. If t represents the time in minutes since the plane has left the terminal building, let $x(t)$ be the horizontal distance traveled and $y(t)$ be the altitude of the plane.
(a) Sketch a possible graph of $x(t)$.
(b) Sketch a possible graph of $y(t)$.
(c) Sketch a possible graph of the ground speed.
(d) Sketch a possible graph of the vertical velocity.

[^0]Sketches again will vary somewhat.

$$
\oint 1.1 \text { \#18 }
$$

§1.1 \# 30. Find the domain of the function $g(u)=\sqrt{u}+\sqrt{4-u}$.
The only constraint for $g(u)=\sqrt{u}+\sqrt{4-u}$ is that what's under the square root sign must be non-negative. Therefore, the domain is $\{u: u \geq 0$ and $4-u \geq 0\}$. The condition " $u \geq 0$ and $4-u \geq 0$ " is equivalent to " $4 \geq u \geq 0$ ", so the domain may be written more simply as $\{u: 4 \geq u \geq 0\}$ or just $[0,4]$.
§1.1 \# 57. A box with an open top is to be constructed from a rectangular piece of cardboard with dimensions 12 in . by 20 in . by cutting out equal squares of side x at each corner and then folding up the sides as in the figure. Express the volume V of the box as a function of x.
The length of the box thus formed is $20-2 x$, the width $12-2 x$, and the height x. Since these three dimensions should all be positive numbers, we see that x should be greater than 0 and less than 6. I.e., the domain of V is $\{x: 0<x<6\}$. The volume V of the box is then given by multiplying the length, width, and height:

$$
\begin{aligned}
V(x) & =(\text { length }) \cdot(\text { width }) \cdot(\text { height }) \\
& =(20-2 x)(12-2 x) x \\
& =\left(240-24 x-40 x+4 x^{2}\right) x \\
& =4 x^{3}-64 x^{2}+240 x
\end{aligned}
$$

§1.2 \# 4. Match each equation with its graph. Explain your choices. (Don't use a computer or graphing calculator.)
(a) G, since $y=3 x$ is the graph of a straight line.
(b) f, since the range of an exponential function such as $y=3^{x}$ is the set of all positive real numbers.
(c) See the answer to (d) below.
(d) The answer to (c) is F and (d) is g since as x gets bigger and bigger, y will get bigger much faster in the case of $y=x^{3}$ than $y=\sqrt[3]{x}$.
$\S 1.3 \# 6$. The graph of $y=\sqrt{3 x-x^{2}}$ is given. Use transformations to create a function whose graph is as shown.
The graph appears to have moved to the right 2 units and stretched vertically by a factor of 2. Therefore, if $f(x)=\sqrt{3 x-x^{2}}$ is the original function, then we need to find $2 f(x-2)$, or $2 \sqrt{3(x-2)-(x-2)^{2}}$. Simplifying yields $2 \sqrt{3 x-6-x^{2}+4 x-4}$, and finally $2 \sqrt{-x^{2}+7 x-10}$.

[^0]: ${ }^{1}$ (c) 2009 by Michael Christ. modified by A. Ogus All rights reserved.

