Math 1A - UCB, Fall 2009 - M. Christ Solutions ${ }^{1}$ to problem Set 14

§6.1 \# 4. Find the area of the shaded region.
Solution: The area is $\int_{0}^{3}\left[2 y-y^{2}-\left(y^{2}-4 y\right)\right] d y=\int_{0}^{3} 2 y-2 y^{2} d y=2\left(\frac{1}{2} 3^{2}-\frac{1}{3} 3^{3}\right)=3$
$\S 6.1 \# 13$. Find the area of the region between the functions $y=12-x^{2}$ and $y=x^{2}-6$.
Solution: First we find the two points of intersection, in order to know what interval to integrate over: $12-x^{2}=x^{2}-6$ if and only if $x^{2}=9$, so $x=3,-3$. We integrate with respect to x. Thus the area is $\int_{-3}^{3}\left(12-x^{2}-\left(x^{2}-6\right)\right) d x=\int_{-3}^{3} 18-2 x^{2} d x=108-2\left(\frac{1}{3} 3^{3}-\frac{1}{3}(-3)^{3}\right)=72$
$\S 6.1 \# 19$. Find the area of the region between the functions $x=2 y^{2}$ and $x=4+y^{2}$.
Solution: We will integrate with respect to y. Points of intersection: $2 y^{2}=4+y^{2}, y=2,-2$. The area is $\int_{-2}^{2}\left(4+y^{2}-2 y^{2}\right) d y=\int_{-2}^{2}\left(4-y^{2}\right) d y=16-\frac{16}{3}=\frac{32}{3}$
$\S 6.1 \# 31$. Evaluate the integral and interpret it as the area of a region $\int_{0}^{\frac{\pi}{2}}|\sin x-\cos 2 x| d x$.
Solution: It is the area betweent the graphs of the function $y=\sin x$ and $y=\cos (2 x)$. To eliminate the absolute value signs, we need to find out at which areas $\sin x-\cos 2 x$ is positive and at which negative. Since the function is continuous, let us first find the zeros, i.e. when $\sin x=\cos (2 x)$. $\cos (2 x)=1-2 \sin ^{2} x$. So $\sin x=\frac{1}{2}$ is a solution, i.e. if $x=\frac{\pi}{6}$. Looking at the sketch, we see that the function is positive if $0<x<\frac{\pi}{6}$ and negative if $\frac{\pi}{6}<x<\frac{\pi}{2}$. Thus $\int_{0}^{\frac{\pi}{2}}|\sin x-\cos 2 x| d x=$ $\int_{0}^{\frac{\pi}{6}} \sin x-\cos 2 x d x+\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cos 2 x-\sin x d x=\frac{3}{2} \sqrt{3}-1$.
$\S 6.1 \# 40$. Sketch the region in the xy-plane defined by the inequalities $x-2 y^{2} \geq 0$ and $1-x-|y| \geq 0$ and find its area
Solution: The first inequality gives us $x \geq 2 y^{2}$, so if we draw the curve $x=2 y^{2}$, every point in this region has to lie on this curve or to the left of this curve. Similarly, if we consider the two cases (y positive and y negative) of $1-x \geq|y|$, we find that the region is bounded by the three functions $x=2 y^{2}, x=y+1$ and $x=1-y$. The intersection points have y values $\frac{1}{2},-\frac{1}{2}$. By symmetry, the area is $2 \int_{0}^{\frac{1}{2}}\left(1-y-2 y^{2}\right) d y=2\left(\frac{1}{2}-\frac{1}{8} \frac{1}{12}\right)=\frac{7}{12}$
$\S 6.1$ \# 43. Use the midpoint rule to estimate the area.
Solution: $40(20.3+29.0+27.3+20.5+8.7)=4232$.
§6.1 \# 45. Two cars, A and B, start side by side and accelerate from rest. The figure shows the graphs of their velocity.
Solution: (a) After one minute, A is ahead, since it has always been driving with higher speed.
(b) The area represents the distance between the two cars after 1 minute.
(c) Car A is still ahead, because the shaded area is greater than the area between the curves integrated over time 1 to 2 .
(d) They are side by side, when the integral $\int_{0}^{t} f_{A}-f_{B} d t=0$, which happens at about $t=2.2$.
$\S 6.2 \# 7$. Find the volume of the solid obtained by rotating the region bounded by $y=x^{3}$ and $y=x$, for $x \geq 0$ around the x-axis.

[^0]Solution. Drawing a picture helps. The curves intersect when $x^{3}=x$, so when $x=-1,0,1$. We care about the region from $x=0$ to $x=1$, as a result. Remember that in this region, $x>x^{3}$. We have

$$
V=\int_{0}^{1} A(x) d x=\int_{0}^{1} \pi\left(x^{2}-\left(x^{3}\right)^{2}\right) d x=\left.\pi\left(\frac{1}{3} x^{3}-\frac{1}{7} x^{7}\right)\right|_{0} ^{1}=\pi\left(\frac{1}{3}-\frac{1}{7}\right)=\frac{4 \pi}{21}
$$

$\S 6.2 \# 12$. Find the volume of the solid obtained by rotating the region bounded by $y=e^{-x}, y=1$, and $x=2$ about the line $y=2$.
Solution. Again, draw a picture. Then

$$
\begin{aligned}
V & =\int_{0}^{2} A(x) d x=\int_{0}^{2} \pi\left[\left(1+\left(1-e^{-x}\right)\right)^{2}-1^{2}\right] d x \\
& =\int_{0}^{2} \pi\left(3-4 e^{-x}+e^{-2 x}\right) d x \\
& =\left.\pi\left(3 x+4 e^{-x}-\frac{1}{2} e^{-2 x}\right)\right|_{0} ^{2} \\
& =\pi\left(6+4 e^{-2}-\frac{1}{2} e^{-4}-4+\frac{1}{2}\right) \\
& =\pi\left(\frac{5}{2}+4 e^{-2}-\frac{1}{2} e^{-4}\right)
\end{aligned}
$$

$\S 6.2 \# 28$. Refer to the figure and find the volume generated by rotating the given region about the specified line. The line specified is \mathcal{R}_{3} about the line $O A$, which is the x-axis.
Solution. Inspection of the picture shows that

$$
V=\int_{0}^{1} A(x) d x=\int_{0}^{1} \pi\left(\sqrt{x}^{2}-\left(x^{3}\right)^{2}\right) d x=\left.\pi\left(\frac{1}{2} x^{2}-\frac{1}{7} x^{7}\right)\right|_{0} ^{1}=\pi\left(\frac{1}{2}-\frac{1}{7}\right)=\frac{5 \pi}{14}
$$

§6.2 \# 49. Find the volume of a right circular cone with height h and base radius r.
Solution. The easiest way to do this is to rotate a triangle of width h and base height r around the x axis. Such a triangle is formed by $x=0, y=0$, and the line $y=r-r x / h$. Then

$$
V=\int_{0}^{h} \pi(r-r x / h)^{2} d x=\left.\frac{-\pi h}{3 r}(r-r x / h)^{3}\right|_{0} ^{h}=0-\frac{-\pi h}{3 r} r^{3}=\frac{1}{3} \pi h r^{2}
$$

$\S 6.2 \# 51$. The the volume of the cap of a sphere with radius r and height h.
Solution. The region can be thought of as the product of rotating the portion of the circle $x^{2}+y^{2}=r^{2}$ bounded by $x=0$ and $y=0$ around the y axis. The best way to do this is to write the circle as a
function of y, so $x=\sqrt{r^{2}-y^{2}}$. Then

$$
\begin{aligned}
V & =\int_{r-h}^{r} A(y) d y \\
& =\int_{r-h}^{r} \pi\left(\sqrt{r^{2}-y^{2}}\right)^{2} d y \\
& =\left.\pi\left(r^{2} y-\frac{1}{3} y^{3}\right)\right|_{r-h} ^{r} \\
& =\pi\left(r^{3}-\frac{1}{3} r^{3}-r^{2}(r-h)+\frac{1}{3}(r-h)^{3}\right) \\
& =\pi\left(h^{2} r+\frac{1}{3} h^{3}\right)
\end{aligned}
$$

§6.2 \# 65(b). Use Cavalieri's Principle to find the volume of an oblique cylinder with radius r and height h.
Solution. The idea is that this solid has cross-sectional areas (all of which are πr^{2}) equal to those of a regular cylinder of radius r and height h, whose volume is known to be $V=\pi r^{2} h$. So the volume of the specified oblique cylinder is the same. This volume can also be calculated by rotating a rectangle about the y - or x-axis.

[^0]: ${ }^{1}$ © 2009 by Michael Christ. All rights reserved.

