
Math 1A — UCB, Spring 2010 — A. Ogus
Solutions1 for Problem Set 12

§5.3 # 9. Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of g(y) =∫ y
2 t

2sintdt.

Solution.

By Part 1 of the Fundamental Theorem of Calculus, g′(y) = y2siny.

�

§5.3 # 16. Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of y =∫ cosx
1 (1 + v2)10dv.

Solution.

Let g(x) =
∫ x
1 (1 + v2)10dv, then y = g(cosx), apply the chain rule, y′ = g′(cosx)(−sinx). By Part

1 of the Fundamental Theorem of Calculus, g′(cosx) = (1 + cos2x)10. Finally,

y′ = g′(cosx)(−sinx) = (1 + cos2x)10(−sinx)

�

§5.3 # 23. Evaluate
∫ 1
0 x

4/5dx.

Solution.

By Part 2 of the Fundamental Theorem of Calculus,
∫ 1
0 x

4/5dx = 5
9x

9/5]10 = 5
9 .

�

§5.3 # 31. Evaluate
∫ π/4
0 sec2tdt.

Solution.

By Part 2 of the Fundamental Theorem of Calculus,
∫ π/4
0 sec2tdt = tanx]

π/4
0 = tan(π/4)− tan0 =

1.

�

§5.3 # 44. What is wrong withe equation
∫ 2
−1

4
x3
dx = − 2

x2
]2−1 = 3

2 .

Solution.
4
x3

is not defined (not integrable, not continuous) over [-1,2]. So one can not apply Part 2 of the
Fundamental Theorem of Calculus.

�

§5.3 # 51 Evaluate the integral
∫ 2
−1 x

3dx and interpret it as a difference of areas. Illustrate with a
graph.

Solution.

Apply Part 2 of the Fundamental Theorem of Calculus,
∫ 2
−1 x

3dx = 1
4x

4]2−1 = 1
424 - 1

4(−1)4 = 4-14
= 15

4 .

�

§5.3 # 53. Find the derivative of g(x) =
∫ 3x
2x

u2−1
u2+1

du.

Solution: Using the substitutions s = 2x and t = 3x, we get that d
dxg(x) = d

dx

∫ 0
2x

u2−1
u2+1

du +
d
dx

∫ 3x
0

u2−1
u2+1

du = d
dx(−

∫ s
0
u2−1
u2+1

du) + d
dx

∫ t
0
u2−1
u2+1

du = − d
ds
u2−1
u2+1

du dsdx + d
dx

∫ t
0
u2−1
u2+1

du dtdx = − s2−1
s2+1

2 +
t2−1
t2+1

3 = −2(4x2−1)
4x2+1

+ −3(9x2−1)
9x2+1
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§5.3 # 56. Find the derivative of y =
∫ 5x
cosx cos(u2)du.

Solution: Using the substitutions s = cosx and t = 5x, we get that dy
dx = d

dx(−
∫ s
0 cos(u2)du) +

d
dx(

∫ t
0 cos(u2)du) = d

ds(−
∫ s
0 cos(u2)du) dsdx+ d

dt(
∫ t
0 cos(u2)du) dtdx = cos(s2) sin(x)+cos(t2)5 = cos(cos2 x)+

5 cos(25x2)

§5.3 # 63. Let g(x) =
∫ x
0 f(t)dt, where f is the function whose graph is shown (page 389).

(a) At what avlues of x do the local maximum and minimum values of g occur?
(b) Where does g attain its abolute maximum?
(c) On what intervals is g concave downward?
(d) Sketch thegraph of g

Solution: (a) By the fundamental theorem of Calculus, f is the derivative of g, hence local max-
ima/minima require a point to be critical, i.e. the derivative to be undefined or zero. So only 1, 3, 5, 7
are possible values for local extrema. At 1 and 5, the function g changes from being increasing to
being decreasing, hence we have local maxima. At 3 and 7 the function g changes from being de-
creasing to being increasing, hence we have local minima.
(b) The absolute maximum can either be achieved at one of the endpoints or at one of the local

maxima. g(0) =
∫ 0
0 f(t)dt = 0. The value g(1) is positive, since it is the area between the graph and

the x-axis integrated from 0 to 1. We have that g(5) > g(1), since the area between the graph and
the x-axis from 1 to 3 is smaller than the area from 3 to 5, so the area we added is bigger than the
area we subtracted when taking the integral. Similarly g(9) > g(5), which makes x = 9 the absolute
maximum.
(c) The graph of g is concave downwards, whenever the graph of its derivative, i.e. of f , is decreasing.
Thus on (0.5, 2) and (4, 6) and (8, 9).
(d) See page A90

§5.3 # 65. Evaluate the limit by recognizing the sum as a Riemann sum for a function defined on

[0, 1]. limn→∞Σn
i=1

i3

n4 .

Solution: ∆x = 1
n . Thus Rn = Σn

i=1
i3

n4 = 1
nΣn

i=1(
i
n)3. So the function is f(x) = x3. So the limit is

limn→∞Σn
i=1

i3

n4 =
∫ 1
0 x

3 = 1
4x

4]10 = 1
4

§5.3 # 66. Evaluate the limit by recognizing the sum as a Riemann sum for a function defined on

[0, 1]. limn→∞
1
n(
√

1
n +

√
2
n + ...+

√
1
n).

Solution: ∆x = 1
n . So f(x) =

√
x and the limit is just

∫ 1
0

√
x = 2

3x
3
2 ]10 = 2

3

§5.3 # 68. If f is continuous and g and h are differentiable functions, find a formula for d
dx

∫ h(x)
g(x) f(t)dt

Solution: d
dx

∫ h(x)
g(x) f(t)dt = d

dx −
∫ g(x)
0 f(t)dt+ d

dx

∫ h(x)
0 f(t)dt = −f(g(x))g′(x) + f(h(x))h′(x)

§5.3 # 74. The area B ios three times the area labeled A. Express b in terms of a.

Solution: We have that 3
∫ a
0 e

xdx = 3A = B =
∫ a
0 e

xdx. Thus, 3(ea − e0) = eb − e0 by the

fundamental theorem of calculus. Thus, eb = 3ea − 2. Thus b = ln(3ea − 2).

§5.4 # 1. Verify by differentiation that
∫

x√
x2+1

dx =
√
x2 + 1 + C.

Solution.

d

dx

√
x2 + 1 + C =

1

2
(x2 + 1)−

1
2 · d

dx
(x2 + 1) =

1

2
√
x2 + 1

· 2x =
x√

x2 + 1
2



�

§5.4 # 11. Find
∫ x3+2

√
x

x dx.

Solution. ∫
x3 + 2

√
x

x
dx =

∫
x2 +

2√
x
dx =

x3

3
+ 2

x
1
2

1
2

+ C =
x3

3
+ 4
√
x+ C.

�

§5.4 # 16. Find
∫

secx(secx+ tanx)dx. Solution.∫
secx(secx+tanx)dx =

∫
sec2 x+secx tanxdx =

∫
sec2 xdx+

∫
secx tanxdx = tanx+secx+C

�

§5.4 # 26. Evaluate
∫ 4
0 (2v + 5)(3v − 1)dv.

Solution.∫ 4

0
(2v + 5)(3v − 1)dv =

∫ 4

0
(6v2 + 13v − 5)dv = 2v3 +

13

2
v2 − 5v |40= (128 + 104− 20)− (0) = 212.

�

§5.4 # 36. Evaluate
∫ π/3
π/4 sec θ tan θdθ.

Solution. ∫ π/3

π/4
sec θ tan θdθ = sec θ |π/3π/4=

√
2− 2

�

§5.4 # 44. Evaluate
∫ 3π/2
0 | sinx|dx.

Solution. Since sinx is positive for x between 0 and π, and negative for x between π and 3π/2,∫ 3π/2

0
| sinx|dx =

∫ π

0
sinxdx+

∫ 3π/2

π
− sinxdx = − cosx |π0 + cosx |3π/2π = (1)−(−1)+(0)−(−1) = 3.

�

§5.4 # 47. Find the area of the region pictured by evaluating
∫ 2
0 (2y − y2)dy.

Solution. ∫ 2

0
(2y − y2)dy = y2 − y3

3
|20= (4− 8

3
)− (0) =

4

3
.

�

§5.4 # 51. If oil leaks from a tank at a rate of r(t) gallons per minute at time t, what does
∫ 120
0 r(t)dt

represent?

Solution.
∫ 120
0 r(t)dt is the total amount of oil that has leaked from the tank in the first 120 minutes,

given in gallons.

�

§5.4 # 52. A honeybee population starts with 100 bees and increases at a rate of n′(t) bees per

week, what does 100 +
∫ 15
0 n′(t)dt represent?

Solution. The total number of bees after 15 weeks.

�
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§5.4 # 59. a(t) = t + 4, v(0) = 5, 0 ≤ t ≤ 10. Find (a) the velocity at time t and (b) the distance
travelled.

Solution.

(a) Since velocity is the antiderivative of acceleration, v(t) =
∫
a(t)dt =

∫
(t+ 4)dt = t2

2 + 4t+ C.
We can solve for C using the fact that v(0) = 5,

5 = v(0) = 02/2 + 4 · 0 + C,

so C = 5 and v(t) = t2

2 + 4t+ 5 (in m/s).

(b)The total distance travelled is given by
∫ 10
0 |v(t)|dt. Since v(t) is positive on this interval, we

get

d =

∫ 10

0
(
t2

2
+ 4t+ 5)dt = (

t3

6
+ 2t2 + 5t) |100 = (

1000

3
+ 2(100) + 5(10))− (0) = 583

1

3

(in m).

�

§5.4 # 64. Suppose a volcano is erupting and the readings of the rate r(t) at which solid materials
are spewed into the atmosphere are given by the table. t is in seconds and r(t) is in tonnes/sec. (a)
give upper and lower estimates for the total quantity Q(6) of erupted material after 6 seconds, and
(b) use the midpoint rule to estimate Q(6).

Solution.

(a)Since the numbers for r(t) are increasing with t, the upper estimate will be given by using right
endpoints in a Riemann Sum, and the lower estimate will be given by left endpoints. There are 6
intervals, and each is 1 second long, so the upper estimate is 10+24+36+46+54+60 = 220 tonnes.
The lower estimate is 2 + 10 + 24 + 36 + 46 + 54 = 172 tonnes.

(b)To use the midpoint rule, we need to know the values of r(t) at the midpoints of our subintervals.
Thus the subintervals cannot be 1 second long (since we do not know the value at the half-seconds), so
we should divide into three 2 second long intervals. Then the Riemann Sum is r(1)·2+r(3)·2+r(5)·2 =
20 + 72 + 108 = 200.
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