Solutions for some homework problems

7.4, 3: Find a 2-Sylow subgroup and a 3-Sylow subgroup of S_{4}.

Solution: S_{4} has 24 elements, so a 2-Sylow subgroup will have order 8 and a 3 -Sylow subgroup will have order 3 . The subgroup H of S_{4} generated by $\left(\begin{array}{ll}1 & 2\end{array} 34\right)$ and (13) has order 8 , and is thus a 2-Sylow subgroup. (Note that (13) belongs the normalizer of the subgroup generated by (1234), which shows that H has order 8. Note also that H is isomorphic to D_{4}.) The subgroup of S_{4} generated by (123) has order 3 and is thus a 3 -Sylow subgroup.
7.4, 9: Let G be a group of order 148. Show that G is not simple.

Solution: $148=4 \times 37$. By Sylow's theorem, it has at least one subgroup P of order 37. If P^{\prime} is another, then $P \cap P^{\prime}$ is just the identity, since its order must properly divided the prime number 37 . Then the map $P \times P^{\prime} \rightarrow G$ is injective, which is not possible, since 37^{2} is larger than 148 . In particular, every conjugate of P is again just P, so P is normal and G is not simple.
7.4, 11: Let G be a group of order $p^{2} q$, where p and q are distinct primes. Show that G is not simple.

Solution: First suppose that $q<p$. Then a p-Sylow subgroup of G has index the smallest prime dividing $|G|$, and hence is normal by problem 12 of section 7.3. So suppose that $q>p$. Recall that the number n_{q} of q-Sylow subgroups Q is congruent to 1 modulo q and divides the index of Q in $|G|$, which in this case is p^{2}. So the only possibilities are $1, p$, and p^{2}. If $n_{q}=1$, Q is normal, and we are done. Since $p<q$, we can't have $p \equiv 1(\bmod q)$. If $n_{q}=p^{2}$, there are p^{2} subgroups of order q, and their only intersection is in the identity. This gives us $p^{2}(q-1)$ elements of exact order q, leaving only p^{2} elements remaining in the group. But any p-Sylow subgroup P must then consist of all these remaining elements. This implies that P is unique, hence normal, so the again G is not simple.

