Solutions for some homework problems

7.4, 3: Find a 2-Sylow subgroup and a 3-Sylow subgroup of S_4 .

Solution: S_4 has 24 elements, so a 2-Sylow subgroup will have order 8 and a 3-Sylow subgroup will have order 3. The subgroup H of S_4 generated by (1 2 3 4) and (1 3) has order 8, and is thus a 2-Sylow subgroup. (Note that (1 3) belongs the normalizer of the subgroup generated by (1 2 3 4), which shows that H has order 8. Note also that H is isomorphic to D_4 .) The subgroup of S_4 generated by (1 2 3) has order 3 and is thus a 3-Sylow subgroup.

7.4, 9: Let G be a group of order 148. Show that G is not simple.

Solution: 148 = 4 × 37. By Sylow's theorem, it has at least one subgroup P of order 37. If P' is another, then $P \cap P'$ is just the identity, since its order must properly divided the prime number 37. Then the map $P \times P' \to G$ is injective, which is not possible, since 37^2 is larger than 148. In particular, every conjugate of P is again just P, so P is normal and G is not simple.

7.4, 11: Let G be a group of order p^2q , where p and q are distinct primes. Show that G is not simple.

Solution: First suppose that q < p. Then a *p*-Sylow subgroup of *G* has index the smallest prime dividing |G|, and hence is normal by problem 12 of section 7.3. So suppose that q > p. Recall that the number n_q of *q*-Sylow subgroups *Q* is congruent to 1 modulo *q* and divides the index of *Q* in |G|, which in this case is p^2 . So the only possibilities are 1, p, and p^2 . If $n_q = 1$, *Q* is normal, and we are done. Since p < q, we can't have $p \equiv 1 \pmod{q}$. If $n_q = p^2$, there are p^2 subgroups of order *q*, and their only intersection is in the identity. This gives us $p^2(q-1)$ elements of exact order *q*, leaving only p^2 elements remaining in the group. But any *p*-Sylow subgroup *P* must then consist of all these remaining elements. This implies that *P* is unique, hence normal, so the again *G* is not simple.