Solutions for some homework problems

6.4.10 Let K be a field and let f be a monic polynomial with coefficients in K of degree $d>0$. Then there exists a splitting field E of K whose degree divides d !. We prove this by induction on d. If $d=1 f$ splits in K and there is nothing to prove. Assume the theorem true for all d^{\prime} less than d. Let us first consider the case in which f is irreducible. Then $K^{\prime}:=K[X] /(f)$ is a field in which f has a root, so the image of f in $K^{\prime}[X]$ can be written as $(X-u) g$, where g has degree $d-1$. The induction hypothesis says that g has a splitting field F such that $\left[F: K^{\prime}\right]$ divides $(d-1)$!. Then $[F: K]=\left[F: K^{\prime}\right] d$ which divides $d!$.

Now suppose that f is reducible, say $f=g h$, where g has degree r and h has degree s, with r and s less than d. Then g has a splitting field E, and $a:=[E: K]$ divides $r!$, by the induction hypothesis. The image of h in $E[X]$ has a splitting field E^{\prime}, and $b:=\left[E^{\prime}: E\right]$ divides $s!$, again by the induction hypothesis. Then f splits in E^{\prime}, and in fact it is clear that it can't split in any smaller field, since the roots of f are the roots of h and g. Now the degree of E^{\prime} over K is $a b$, which divides $r!s!$. Since $d=r+s$, we know that $r!s$! divides d ! so $a b$ also divides d !.
6.5.4 Compute the splitting fields of $X^{4}+2$ and $X^{4}-2$ over \mathbf{F}_{3}.

In the field $\mathbf{F}_{3}, 2=-1$, so the first polynomial is

$$
X^{4}-1=(X-1)(X+1)\left(X^{2}+1\right)
$$

Evidently the splitting field of this is the same as the splitting field of $X^{2}+1$. This polynomial is irreducible, since -1 is not a square mod 3 . In the field $\mathbf{F}_{3}[X] /\left(X^{2}+1\right)=\mathbf{F}_{9}$, the polynomial $X^{2}+1$ has two roots, i and $-i$, and hence it splits. Note that this field has 9 elements, so its multiplicative group is a cyclic group of order 8 . Let u be a generator. Then $u^{8}=1$ but $u^{4} \neq 1$. Then if we let $v:=u^{4}$, we see that $v^{2}=1$ but $v \neq 1$, hence $v^{2}=-1$. Then $u^{4}=-1$ and u is a root of the polynomial $X^{4}+1=X^{4}-2$. In fact the cyclic group of order 8 has exactly 4 generators, so there are 4 such roots, and our polynomial splits.
6.5.11 Prove that if $a \in \mathbf{F}_{p}^{*}$, then the polynomial $f:=X^{p}-X+a$ is irreducible in $\mathbf{F}_{p}[X]$.

Indeed, suppose that g is a monic irreducible factor of f and consider the field $E:=\mathbf{F}_{p}[X] /(g)$. Recall that the map $\phi: E \rightarrow E$ defined by $\phi(e)=e^{p}$ is an automorphism of E over \mathbf{F}_{p} (the Frobenius automorphism). It follows that ϕ maps roots of g into roots of g : if $e \in E$ and $g(e)=0$, then $g\left(e^{p}\right)$ is also zero. But if $g(e)=0, f(e)=0$, hence $e^{p}=e-a$. Thus $e-a$ is also a root of g. Repeating this argument, we see that $e-a-a=e-2 a$ is a root, and in fact $e-i a$ is a root of g for every i. Since $a \in \mathbf{F}_{\mathbf{p}}^{*}, e-i a \neq e-j a$ if i and j are not congruent modulo p. This means that g has at least p roots, hence has degee at least p, hence $g=f$.
9.1.14 Let $S:=\mathbf{Z}[\sqrt{2}]$. Prove S^{*} is isomorphic to $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z}$.

We do this using exercise 5.1.4, where it is shown that the only elements of finite order are 1 and -1 and that $u:=1+\sqrt{2}$ has infinite order. Then it will
suffice to show that every element S^{*} is a power of u times ± 1. If $\alpha:=m+n \sqrt{2}$ is an element of S, then $\sigma(\alpha):=m-n \sqrt{2} \in S$, and $\sigma: S \rightarrow S$ is an automorphism of S. If α is a unit, then so is $\sigma(\alpha)$, and hence so is $N(\alpha):=\alpha \sigma(\alpha)=m^{2}-2 n^{2}$. Hence $m^{2}-2 n^{2}= \pm 1$. Then $\phi(\alpha)= \pm \alpha^{-1}$, so our claim for α will follow if we prove that $\pm \phi(\alpha)$ or $\pm \alpha$ is a power of u. Thus we may as well assume that m and n are nonnegative. Let F be the set of $\alpha \in S^{*}$ which are not powers of u and such that m and n are nonnegative. It will suffice to prove that F is empty. If not, choose α from F with m minimal. Since $u^{-1}=-1+\sqrt{2}$,

$$
m^{\prime}+n^{\prime} \sqrt{2}:=\alpha u^{-1}=(2 n-m)+(m-n) \sqrt{2} .
$$

Note that $m \geq n$, since otherwise we would have $n^{2}>m^{2}=2 n^{2} \pm 1$, which would imply $n=0, m=1$, a contradiction of our assumption that α is not a power of u. Note also that $m \leq 2 n$, since otherwise we would have $2 n<m$, hence $4 n^{2}<m^{2}=2 n^{2} \pm 1$, hence $2 n^{2}<1$, which again would imply $n=0$. Thus m^{\prime} and n^{\prime} are still nonnegative. Furthermore $m^{\prime}=2 n-m<m$ since otherwise we would have $m \leq 2 n-m$ hence $m \leq n$, hence $m=n$ and hence $m=1$ and $\alpha=u$, a contradiction. Since $m^{\prime}<m, \alpha^{\prime}:=m^{\prime}+n^{\prime} \sqrt{2}$ is not in F. Since it is a unit of S, it must be a power of u, and since $\alpha=u \alpha^{\prime}, \alpha$ is also a power of u. Contradiction.

