Solution to 9.3.4

Suppose n is a positive integer for which there exists an x such that $x^{2}+1 \equiv 0$ $(\bmod n)$. Then n can be written as a sum $a^{2}+b^{2}$, where a and b are relatively prime. To see this, note first that if $x^{2}+1 \equiv 0(\bmod n)$ and d divides n, then the same is true mod d. Since no solution to this equation exists if $d=4, n$ can't be divisible by 4 . Similarly, n can't be divisible by any prime congruent to $3 \bmod 4$. Let's factor n into primes: $n=\prod p^{e_{p}}$. Then $e_{p}=0$ if $p \equiv 3(\bmod 4)$ and $e_{2} \leq 1$. If p is odd and $e_{p} \neq 0, p \equiv 1(\bmod 1)$, so we have $p=\alpha_{p} \bar{\alpha}_{p}$, where α_{p} is irreducible and α_{p} and α_{p} are not associate. Let $\alpha_{2}:=1+i$, and let $\beta:=\prod_{p} \alpha_{p}^{e_{p}}$. Let's check that β is not divisible by any odd prime q of \mathbf{Z}. If $q \equiv 3(\bmod 4)$, then q is prime in $\mathbf{Z}[i]$, and since q does not divide any α_{p}, q does not divide the product. If $q \equiv 1(\bmod 4)$, then q has a prime factorization $q=\alpha_{q} \bar{\alpha}_{q}$, and we see that β is divisible by at most one of α_{q} and $\bar{\alpha}_{q}$, but not by both. Since $e_{2}<2, \beta$ is not divisible by 2 . Now write $\beta=a+i b$. Since β is not divisible by any prime in \mathbf{Z}, a and b are relatively prime. But $n=a^{2}+b^{2}$.

