
Solutions for some homework problems

7.2.4: Let p be a prime number and let C be a cyclic subgroup of order p in
Sp. Compute the order of the normalizer N(C) of C.

Solution: Let σ be a generator of C and write σ as a product γ1 · · · γr of
disjoint cycles. The order of σ is the least common multiple of the lengths of
these cycles, so they each have length p, Since we are the Sp, we must have
r = 1. Write σ = (a1 a2 · · · ap). There are p! such expressions, but each cycle
can be written p ways as such an expression. This gives us (p − 1)! p-cycles in
Sp, and we know they are all conjugate. Each of these cycles generates a group
of order p, and each such group has p − 1 generators. Thus there are (p − 2)!
cyclic subgroups of order p in Sp, all conjugate. Hence the normalizer of any
one of them has index (p− 2)! and hence has order p(p− 1).

7.3.8: Let G be a finite p-group and let H be a proper subgroup. Show that
there is an element g ∈ G \H such that gHg−1 = H.
Solution: Let us consider the action of G on the set S := G/H of left cosets of
H. Restrict this to an action of H on S: H ×S → S. Note that H is a p-group
and that S has [G : H] elements; this number is a positive power of p. Then
Lemma 7.3.7 implies that |SH | is divisible by p. Now H ∈ |SH |, so |SH | ≥ 1,
hence in fact |SH | ≥ p. Thus there exists some coset, call it gH, with g 6∈ G,
such that gH ∈ SH . Then for any h ∈ H, hgH = gH, i.e.g−1hgH = H, so
g−1hg ∈ H.

7.2.18: Compute the conjugacy classes of A5 and use the result to show that
A5 is a simple group.

Recall that in class we showed that two elements σ and σ′ of Sn are conjugate
if and only if their respective cycle decompositions:

σ = γ1 · · · γr, σ′ = γ′1 · · · γ′r′

have the same “shape”; i.e., r = r′ and length(γi) = length(γ′i) for all i (after
reordering if necessary). This is not quite true in An, but it not hard to see
what is happening there.

Lemma. Let α be an element of An, let Zα := {σ : α = ασ : σ ∈ Sn} be
its centralizer, and let C(α) := {ασ : σ ∈ Sn} be its Sn-conjugacy class. On
the other hand, let C ′(α) := {ασ : σ ∈ An} be the An conjugacy class of α.
Evidently C ′(α) ⊆ C(α), and we want to know how and when these differ. We
have isomorphisms: C(α) ∼= Sn/Zα (of Sn-sets) and C ′(α) ∼= An/(Zα ∩An) (of
An-sets). There are two cases:

Case 1: Zα ⊆ An. In this case Zα ∩ An = Zα, and since An has just half as
many elements as Sn, we have that C ′(α) ∼= An/Zα has half as many elements
as C(α) ∼= Sn/Zα.

Case 2: Zα 6⊆ An. In this case it follows that C ′(α) = C(α). Indeed, by
assumption there is some odd element τ of Zα. Then if σ is any odd element of
Sn,

ασ = (ατ )σ = αστ ∈ C ′(α)
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since στ ∈ An. If σ is even, ασ was already in C ′(α) , so this shows that
C(α) = C ′(α).

Now let us look at the various possibilities:
3-cycles, e.g. α = (1 2 3). There are 20 of these, all conjugate in S5, and

(4 5) is an odd element of the centralizer of (1 2 3), so they are also conjugate
in A5 (Case 1).

5-cycles:, e.g. α = (1 2 3 4 5). There are 24 of these, all conjugate in S5.
It follows that the index of the centralizer of Zα in S5 is 5, so Zα = 〈(α)〉 is
contained in A5 (Case 2). Thus this conjugacy class splits into two pieces, each
of size 12. (For example, (2 1 3 4 5) is not in the An-conjugacy class of α.)

Products of 2 2-cycles, e.g. α = (1 2)(3 4). There are (5 ·4 ·3 ·2)/2 ·2 ·2 = 15
of these, all conjugate in Sn. In fact (1 2) is an odd element of the centralizer
of α. so we are in Case 1 and they are all conjugate in An.

The identity element. This is fixed by conjugation.
Thus An has the following conjugacy classes:

• C(1 2 3), with 20 elements.

• C(1 2 3 4 5), with 12 elements.

• C(2 1 3 4 5), with 12 elements.

• C((1 2)(3 4)) with 15 elements.

• C(e) with 1 element.

Note that 60 = 20+12+12+15+1, as it should. Now any normal subgroup
is invariant under conjugation, and hence must be a union of conjugacy
classes, and must contain e. So the number of elements in such a group
is a sum of the some of the above numbers, including 1. Furthermore,
this number divides 60. But the only numbers of this form are 1 and 60.
Hence An has no proper normal subgroups, and hence it is simple.

7.3.13ab Show that Sn acts transitively on the set {1, · · · , n}, and that An
also does if n > 2. Indeed, for Sn just have to show that given any i, j, there
exists an element σ(i) = j. This is trivial if i = j, and if not we can take the
transposition (i j). To do this for An, we must use the fact that n > 2, so there
is some k with 1 ≤ k ≤ n and k 6= i, j. Then the 3-cycle (i j k) is even and
takes i to j.
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