Solutions for some homework problems

7.2.4: Let p be a prime number and let C be a cyclic subgroup of order p in S_p. Compute the order of the normalizer $N(C)$ of C.

Solution: Let σ be a generator of C and write σ as a product $\gamma_1 \cdots \gamma_r$ of disjoint cycles. The order of σ is the least common multiple of the lengths of these cycles, so they each have length p. Since we are the S_p, we must have $r = 1$. Write $\sigma = (a_1 \ a_2 \ \cdots \ \ a_p)$. There are $p!$ such expressions, but each cycle can be written p ways as such an expression. This gives us $(p-1)!$ p-cycles in S_p, and we know they are all conjugate. Each of these cycles generates a group of order p, and each such group has $p-1$ generators. Thus there are $(p-2)!$ cyclic subgroups of order p in S_p, all conjugate. Hence the normalizer of any one of them has index $(p-2)!$ and hence has order $p(p-1)$.

7.3.8: Let G be a finite p-group and let H be a proper subgroup. Show that there is an element $g \in G \setminus H$ such that $gHg^{-1} = H$.

Solution: Let us consider the action of G on the set $S := G/H$ of left cosets of H. Restrict this to an action of H on S: $H \times S \to S$. Note that H is a p-group and that S has $[G:H]$ elements; this number is a positive power of p. Then Lemma 7.3.7 implies that $|S^H|$ is divisible by p. Now $H \in |S^H|$, so $|S^H| \geq 1$, hence in fact $|S^H| \geq p$. Thus there exists some coset, call it gH, with $g \notin G$, such that $gH \in S^H$. Then for any $h \in H$, $hgH = gH$, i.e. $g^{-1}hgH = H$, so $g^{-1}hg \in H$.

7.2.18: Compute the conjugacy classes of A_5 and use the result to show that A_5 is a simple group.

Recall that in class we showed that two elements σ and σ' of S_n are conjugate if and only if their respective cycle decompositions:

$$\sigma = \gamma_1 \cdots \gamma_r, \sigma' = \gamma'_1 \cdots \gamma'_r$$

have the same “shape”; i.e., $r = r'$ and $\text{length}(\gamma_i) = \text{length}(\gamma'_i)$ for all i (after reordering if necessary). This is not quite true in A_n, but it not hard to see what is happening there.

Lemma. Let α be an element of A_n, let $Z_\alpha := \{\sigma : \alpha = \alpha^\sigma : \sigma \in S_n\}$ be its centralizer, and let $C(\alpha) := \{\alpha^\sigma : \sigma \in S_n\}$ be its S_n-conjugacy class. On the other hand, let $C'(\alpha) := \{\alpha^\sigma : \sigma \in A_n\}$ be the A_n conjugacy class of α. Evidently $C'(\alpha) \subseteq C(\alpha)$, and we want to know how and when these differ. We have isomorphisms: $C(\alpha) \cong S_n/Z_\alpha$ (of S_n-sets) and $C'(\alpha) \cong A_n/(Z_\alpha \cap A_n)$ (of A_n-sets). There are two cases:

Case 1: $Z_\alpha \subseteq A_n$. In this case $Z_\alpha \cap A_n = Z_\alpha$, and since A_n has just half as many elements as S_n, we have that $C'(\alpha) \cong A_n/Z_\alpha$ has half as many elements as $C(\alpha) \cong S_n/Z_\alpha$.

Case 2: $Z_\alpha \not\subseteq A_n$. In this case it follows that $C'(\alpha) = C(\alpha)$. Indeed, by assumption there is some odd element τ of Z_α. Then if σ is any odd element of S_n,

$$\alpha^\sigma = (\alpha^\tau)^{\sigma^\tau} = \alpha^{\sigma\tau} \in C'(\alpha)$$

1
Now let us look at the various possibilities:

3-cycles, e.g. \(\alpha = (1 \ 2 \ 3) \). There are 20 of these, all conjugate in \(S_5 \), and (4 5) is an odd element of the centralizer of (1 2 3), so they are also conjugate in \(A_5 \) (Case 1).

5-cycles, e.g. \(\alpha = (1 \ 2 \ 3 \ 4 \ 5) \). There are 24 of these, all conjugate in \(S_5 \). It follows that the index of the centralizer of \(Z_\alpha \) in \(S_5 \) is 5, so \(Z_\alpha = \langle (\alpha) \rangle \) is contained in \(A_5 \) (Case 2). Thus this conjugacy class splits into two pieces, each of size 12. (For example, \(2(1 \ 3 \ 4 \ 5) \) is not in the \(A_n \)-conjugacy class of \(\alpha \).)

Products of 2 2-cycles, e.g. \(\alpha = (1 \ 2)(3 \ 4) \). There are \((5 \cdot 4 \cdot 3 \cdot 2)/2 \cdot 2 \cdot 2 = 15 \) of these, all conjugate in \(S_n \). In fact \((1 \ 2) \) is an odd element of the centralizer of \(\alpha \). so we are in Case 1 and they are all conjugate in \(A_n \).

The identity element. This is fixed by conjugation.

Thus \(A_n \) has the following conjugacy classes:

- \(C(1 \ 2 \ 3) \), with 20 elements.
- \(C(1 \ 2 \ 3 \ 4 \ 5) \), with 12 elements.
- \(C(2 \ 1 \ 3 \ 4 \ 5) \), with 12 elements.
- \(C((1 \ 2)(3 \ 4)) \) with 15 elements.
- \(C(e) \) with 1 element.

Note that 60 = 20 + 12 + 12 + 15 + 1, as it should. Now any normal subgroup is invariant under conjugation, and hence must be a union of conjugacy classes, and must contain \(e \). So the number of elements in such a group is a sum of the some of the above numbers, including 1. Furthermore, this number divides 60. But the only numbers of this form are 1 and 60. Hence \(A_n \) has no proper normal subgroups, and hence it is simple.

7.3.13ab Show that \(S_n \) acts transitively on the set \(\{1, \ldots, n\} \), and that \(A_n \) also does if \(n > 2 \). Indeed, for \(S_n \) just have to show that given any \(i, j \), there exists an element \(\sigma(i) = j \). This is trivial if \(i = j \), and if not we can take the transposition \((i \ j) \). To do this for \(A_n \), we must use the fact that \(n > 2 \), so there is some \(k \) with \(1 \leq k \leq n \) and \(k \neq i, j \). Then the 3-cycle \((i \ j \ k) \) is even and takes \(i \) to \(j \).