Solutions for some homework problems

7.2.4: Let p be a prime number and let C be a cyclic subgroup of order p in S_{p}. Compute the order of the normalizer $N(C)$ of C.

Solution: Let σ be a generator of C and write σ as a product $\gamma_{1} \cdots \gamma_{r}$ of disjoint cycles. The order of σ is the least common multiple of the lengths of these cycles, so they each have length p, Since we are the S_{p}, we must have $r=1$. Write $\sigma=\left(\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{p}\end{array}\right)$. There are p ! such expressions, but each cycle can be written p ways as such an expression. This gives us $(p-1)!p$-cycles in S_{p}, and we know they are all conjugate. Each of these cycles generates a group of order p, and each such group has $p-1$ generators. Thus there are $(p-2)$! cyclic subgroups of order p in S_{p}, all conjugate. Hence the normalizer of any one of them has index $(p-2)$! and hence has order $p(p-1)$.
7.3.8: Let G be a finite p-group and let H be a proper subgroup. Show that there is an element $g \in G \backslash H$ such that $g H g^{-1}=H$.
Solution: Let us consider the action of G on the set $S:=G / H$ of left cosets of H. Restrict this to an action of H on $S: H \times S \rightarrow S$. Note that H is a p-group and that S has $[G: H]$ elements; this number is a positive power of p. Then Lemma 7.3.7 implies that $\left|S^{H}\right|$ is divisible by p. Now $H \in\left|S^{H}\right|$, so $\left|S^{H}\right| \geq 1$, hence in fact $\left|S^{H}\right| \geq p$. Thus there exists some coset, call it $g H$, with $g \notin G$, such that $g H \in S^{H}$. Then for any $h \in H, h g H=g H$, i.e. $g^{-1} h g H=H$, so $g^{-1} h g \in H$.
7.2.18: Compute the conjugacy classes of A_{5} and use the result to show that A_{5} is a simple group.

Recall that in class we showed that two elements σ and σ^{\prime} of S_{n} are conjugate if and only if their respective cycle decompositions:

$$
\sigma=\gamma_{1} \cdots \gamma_{r}, \sigma^{\prime}=\gamma_{1}^{\prime} \cdots \gamma_{r^{\prime}}^{\prime}
$$

have the same "shape"; i.e., $r=r^{\prime}$ and $\operatorname{length}\left(\gamma_{i}\right)=\operatorname{length}\left(\gamma_{i}^{\prime}\right)$ for all i (after reordering if necessary). This is not quite true in A_{n}, but it not hard to see what is happening there.

Lemma. Let α be an element of A_{n}, let $Z_{\alpha}:=\left\{\sigma: \alpha=\alpha^{\sigma}: \sigma \in S_{n}\right\}$ be its centralizer, and let $C(\alpha):=\left\{\alpha^{\sigma}: \sigma \in S_{n}\right\}$ be its S_{n}-conjugacy class. On the other hand, let $C^{\prime}(\alpha):=\left\{\alpha^{\sigma}: \sigma \in A_{n}\right\}$ be the A_{n} conjugacy class of α. Evidently $C^{\prime}(\alpha) \subseteq C(\alpha)$, and we want to know how and when these differ. We have isomorphisms: $C(\alpha) \cong S_{n} / Z_{\alpha}$ (of S_{n}-sets) and $C^{\prime}(\alpha) \cong A_{n} /\left(Z_{\alpha} \cap A_{n}\right)$ (of A_{n}-sets). There are two cases:

Case 1: $Z_{\alpha} \subseteq A_{n}$. In this case $Z_{\alpha} \cap A_{n}=Z_{\alpha}$, and since A_{n} has just half as many elements as S_{n}, we have that $C^{\prime}(\alpha) \cong A_{n} / Z_{\alpha}$ has half as many elements as $C(\alpha) \cong S_{n} / Z_{\alpha}$.
Case 2: $Z_{\alpha} \nsubseteq A_{n}$. In this case it follows that $C^{\prime}(\alpha)=C(\alpha)$. Indeed, by assumption there is some odd element τ of Z_{α}. Then if σ is any odd element of S_{n},

$$
\alpha^{\sigma}=\left(\alpha^{\tau}\right)^{\sigma}=\alpha^{\sigma \tau} \in C^{\prime}(\alpha)
$$

since $\sigma \tau \in A_{n}$. If σ is even, α^{σ} was already in $C^{\prime}(\alpha)$, so this shows that $C(\alpha)=C^{\prime}(\alpha)$.

Now let us look at the various possibilities:
3 -cycles, e.g. $\alpha=\left(\begin{array}{ll}1 & 2 \\ 3\end{array}\right)$. There are 20 of these, all conjugate in S_{5}, and (45) is an odd element of the centralizer of (123), so they are also conjugate in A_{5} (Case 1).

5-cycles:, e.g. $\alpha=\left(\begin{array}{lll}1 & 2 & 3\end{array} 4\right.$). There are 24 of these, all conjugate in S_{5}. It follows that the index of the centralizer of Z_{α} in S_{5} is 5 , so $Z_{\alpha}=\langle(\alpha)\rangle$ is contained in A_{5} (Case 2). Thus this conjugacy class splits into two pieces, each of size 12. (For example, (2 1345) is not in the A_{n}-conjugacy class of α.)

Products of 22 -cycles, e.g. $\alpha=(12)(34)$. There are $(5 \cdot 4 \cdot 3 \cdot 2) / 2 \cdot 2 \cdot 2=15$ of these, all conjugate in S_{n}. In fact (12) is an odd element of the centralizer of α. so we are in Case 1 and they are all conjugate in A_{n}.

The identity element. This is fixed by conjugation.
Thus A_{n} has the following conjugacy classes:

- C(12 3), with 20 elements.
- C(1 234 5), with 12 elements.
- $C(21345)$, with 12 elements.
- $C((12)(34))$ with 15 elements.
- $C(e)$ with 1 element.

Note that $60=20+12+12+15+1$, as it should. Now any normal subgroup is invariant under conjugation, and hence must be a union of conjugacy classes, and must contain e. So the number of elements in such a group is a sum of the some of the above numbers, including 1. Furthermore, this number divides 60 . But the only numbers of this form are 1 and 60 . Hence A_{n} has no proper normal subgroups, and hence it is simple.
7.3.13ab Show that S_{n} acts transitively on the set $\{1, \cdots, n\}$, and that A_{n} also does if $n>2$. Indeed, for S_{n} just have to show that given any i, j, there exists an element $\sigma(i)=j$. This is trivial if $i=j$, and if not we can take the transposition $(i j)$. To do this for A_{n}, we must use the fact that $n>2$, so there is some k with $1 \leq k \leq n$ and $k \neq i, j$. Then the 3 -cycle ($i j k$) is even and takes i to j.

