Cyclicity

Theorem: Let GG be a finite group. Then the following conditions are equiv-
alent:

1. G is cyclic.

2. For each d € Z*, the number of g € G such that g% = e is less than or
equal to d.

3. For each d € Z*, GG has at most one subgroup of order d.

4. For each d € Z™, G has at most ¢(d) elements of order d.

Proof: Suppose that G is cyclic of order n. If d € Z* | let d' := ged(d, n) and
write d = d'c and n = d'm. Clearly if ¢* = e, then also ¢g¢ = e. Moreover,
since there exist integers z,y such that d’ = zd +yn and g" = e, g% = ¢*? so
g% = e implies also that ¢¢ = e. Thus ¢¢ = e iff ¢¢ = e. Now if g, generates
g, the set of all such g is just the subgroup of G generated by g', which has
d elements. Thus (1) implies (2).

Suppose that (2) holds and d € Z". Let H be a subgroup of G of order
d. Then g¢ = e for every g € G. According to (2), there are at most d such
elements. But then H = {g € G : g% = e}, and hence H is unique.

Suppose (3) holds. If there are no elements of order d, then there is
nothing to check. If ¢g is an element of order d, then (g) is a subgroup of
order d, and by (3), it is the unique such subgroup. Hence if ¢’ is any element
of order d, ¢" € (g). Since (g) contains exactly ¢(d) elements of order d, we
see that G has exactly ¢(d) elements of order d.

Suppose that (4) holds. For each divisor d of the order of G, let m(d)
denote the number of elements of G of order d. Looking at the partition
of the group G obtained by grouping together elements of the same order,
we see that the sum of all m(d) is equal to the order of G. For example, if
G =7y, m(d) = ¢(d) if d|n and m(d) = 0 otherwise. Thus 3y, ¢(d) = n. If
G is a group of order n and satisfies (3) we find that

n=7y m(d) <Y ¢(d) =n
dln dn
Since each 0 < m(d) < ¢(d) for each d, we see that the equality >4, m(d) =
i ¢(d) implies that each m(d) = ¢(d) for every d. In particular m(n) =
¢(n) # 0. This means that G has at least one elmeent of order n, and hence
is cyclic. O]



