
Cyclicity

Theorem: Let G be a finite group. Then the following conditions are equiv-
alent:

1. G is cyclic.

2. For each d ∈ Z+, the number of g ∈ G such that gd = e is less than or
equal to d.

3. For each d ∈ Z+, G has at most one subgroup of order d.

4. For each d ∈ Z+, G has at most φ(d) elements of order d.

Proof: Suppose that G is cyclic of order n. If d ∈ Z+, let d′ := gcd(d, n) and
write d = d′c and n = d′m. Clearly if gd′

= e, then also gd = e. Moreover,
since there exist integers x, y such that d′ = xd+ yn and gn = e, gd′

= gxd so
gd = e implies also that gd′

= e. Thus gd = e iff gd′
= e. Now if g0 generates

g, the set of all such g is just the subgroup of G generated by gm
0 , which has

d elements. Thus (1) implies (2).
Suppose that (2) holds and d ∈ Z+. Let H be a subgroup of G of order

d. Then gd = e for every g ∈ G. According to (2), there are at most d such
elements. But then H = {g ∈ G : gd = e}, and hence H is unique.

Suppose (3) holds. If there are no elements of order d, then there is
nothing to check. If g is an element of order d, then 〈g〉 is a subgroup of
order d, and by (3), it is the unique such subgroup. Hence if g′ is any element
of order d, g′ ∈ 〈g〉. Since 〈g〉 contains exactly φ(d) elements of order d, we
see that G has exactly φ(d) elements of order d.

Suppose that (4) holds. For each divisor d of the order of G, let m(d)
denote the number of elements of G of order d. Looking at the partition
of the group G obtained by grouping together elements of the same order,
we see that the sum of all m(d) is equal to the order of G. For example, if
G = Zn, m(d) = φ(d) if d|n and m(d) = 0 otherwise. Thus

∑
d|n φ(d) = n. If

G is a group of order n and satisfies (3) we find that

n =
∑
d|n
m(d) ≤

∑
d|n
φ(d) = n

Since each 0 ≤ m(d) ≤ φ(d) for each d, we see that the equality
∑

d|nm(d) =∑
d|n φ(d) implies that each m(d) = φ(d) for every d. In particular m(n) =

φ(n) 6= 0. This means that G has at least one elmeent of order n, and hence
is cyclic.
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