Determinants of operators and matrices

Let V be a finite dimensional \mathbb{C}-vector space and let T be an operator on V.

Recall:

The characteristic polynomial f_T is the polynomial

$$f_T(t) = \prod_{\lambda} (t - \lambda)^{d_{\lambda}} \text{ where } d_{\lambda} = \dim GE_\lambda.$$

The Cayley-Hamilton theorem:

$$f_T(T) = 0 \text{ as an operator on } V.$$

Goal: compute f_T, without actually computing the generalized eigenspaces, or even the eigenvalues, just from $M_B(T)$ for any arbitrary basis B for V.

$$f_T(t) := \prod_{\lambda} (t - \lambda)^{d_{\lambda}} = t^n + a_1 t^{n-1} + \cdots + a_n,$$

for some list of complex numbers a_i.

Definition 1 If $T \in \mathcal{L}(V)$ and

$$f_T(t) = t^n + a_1 t^{n-1} + \cdots + a_n,$$

is its characteristic polynomial, then

$$\text{trace}(T) := -a_1 \text{ and }$$

$$\text{det}(T) := (-1)^n a_n$$

Last time:

If $A := M_B(T)$, then

$$\text{trace}(T) = \text{trace}(A) := \sum a_{i,i}$$
Outline:
1. Define the determinant of a matrix, \(\det(A) \).
2. Check that if \(A \) is uppertriangular,
\[
\det(A) = \prod a_{ii}.
\]
3. Show that if \(A \) and \(B \) are \(n \times n \) matrices,
\[
\det(AB) = \det(A) \det(B).
\]
4. Conclude that \(\det(S^{-1}AS) = \det A \) for every invertible \(S \).
5. Conclude that if \(A = M_B(T) \), then \(\det(A) = \det(T) \).

Step (1) is probably the hardest. How to find the definition? Many approaches. I’ll follow the book, more or less. Let’s look at cyclic spaces.

Theorem 2 Suppose that \(V \) is \(T \)-cyclic, so that there is a \(v \in V \) with
\[
V = \text{span}(v, Tv, T^2v, \ldots T^{n-1}v).
\]
Then \((v, Tv, \ldots, T^{n-1}v) \) is a basis of \(V \), and
\[
T^nv = c_0v + c_1Tv + \cdots + c_{n-1}T^{n-1}v
\]
for a unique list \((c_0, \ldots, c_{n-1})\) in \(\mathbb{C} \). Then the characteristic polynomial of \(T \) is
\[
p(t) = t^n - c_{n-1}t^{n-1} - \cdots - c_1 t - c_0.
\]

Example 3 Last time we looked at \(T(x_1, x_2) := (x_2, x_1) \). Let \(v := (1, 0) \). Then \((v, Tv) \) is a basis for \(V \), and \(T^2v = v \). Thus \(c_0 = 1 \) and \(c_1 = 0 \), the \(p(t) = t^2 - 1 \).

Proof: The equation for \(T^nv \) says that
\[
p(T)(v) = 0.
\]
It follows that
\[
p(T)(T^i v) = T^i p(T)(v) = 0 \text{ for all } i
\]
and since the \(T^i v \)’s span \(V \) \(p(T) = 0 \). Since the list \((v, Tv, \ldots, T^{n-1}v)\) is independent, there is no polynomial of smaller degree that annihilates \(T \). Thus \(p \) is the minimal polynomial of \(T \), and since its degree is the dimension of \(V \) \(p \) is also the characteristic polynomial of \(T \).

Corollary 4 In the cyclic case above, \(\det(T) = (-1)^{n+1}c_0 \).

Example 5 Let \(\mathcal{B} = (v_1, \ldots, v_n) \) and let \(T \) be the operator sending \(v_1 \) to \(v_2 \), \(v_2 \) to \(v_3 \), and so on, but then \(v_n \) to \(v_1 \). Then the characteristic polynomial of \(T \) is
\[
f_T(t) = t^n - 1 \text{ and } \det(T) = (-1)^{n+1}
\]
In this example, our linear transformation just *permutes* the basis. Our next step is to discuss more general cases of this.
Permutations

Definition 6 A permutation of the set $1,\ldots,n$ is a bijective function σ from the set $\{1,\ldots,n\}$ to itself. Equivalently, it is a list $(\sigma(1),\ldots,\sigma(n))$ such that each element of $\{1,\ldots,n\}$ occurs exactly once. The set of all permutations of length n is denoted by S_n.

Examples in S_5:
(2, 3, 4, 5, 1)
(2, 4, 3, 1, 5)
(2, 4, 5, 1, 3)

The first of these is cycle of length 5. Note that the second doesn’t move 3 or 5, and can be viewed as a cyclic permutation of the set $\{1,2,4\}$. The last permutation can be viewed as the product (composition) of a cyclic permutation of $\{1,2,4\}$ and a cyclic permutation of $\{3,5\}$.

Definition 7 The sign of a permutation σ is $(-1)^m$ where m is the number of pairs (i,j) where $1 \leq i < j \leq n$ but $\sigma(i) > \sigma(j)$

Here’s an easy way to count: Arrange $(1,2,\ldots,n)$ in one row, and $(\sigma(1),\sigma(2),\ldots,\sigma(n))$ in a row below. Draw lines connecting i in the first row to i in the second. Then m is the number of crosses.

Examples:

```
1 2 3 4 5
2 3 4 5 1
```

so $m = 4$ and sgn = +1.

```
1 2 3 4 5
2 4 3 1 5
```

so $m = 4$ and sgn = +1.

```
1 2 3 4 5
2 4 5 1 3
```

so $m = 5$ and sgn = −1.
Example 8 A cycle of length n has $n - 1$ crossings, and so its sign is $(-1)^{n-1}$. Note that this is the same as the determinant of the corresponding linear transformation.

Theorem 9 If $\sigma, \tau \in S_n$, then

$$\text{sgn}(\sigma \tau) = \text{sgn}(\sigma)\text{sgn}(\tau)$$

Omit the proof, at least for now.

Definition 10 Let A be an $n \times n$ matrix. Then

$$\det A := \sum_{\sigma \in S_n} \text{sgn}(\sigma)a_{1,\sigma(1)}a_{2,\sigma(2)}\cdots a_{n,\sigma(n)}$$

Example 11 When $n = 2$ there are two permutations, and we get

$$\det(A) = a_{1,1}a_{2,2} - a_{1,2}a_{2,1}.$$

Proposition 12 Let A and B be $n \times n$ matrices.

1. If A is upper triangular, $\det(A) = \prod a_{i,i}$.

2. If B is obtained from A by interchanging two columns, then $\det(B) = -\det(A)$.

3. If two columns of A are equal, $\det(A) = 0$.

4. $\det(A)$ is a linear function of each column, (when all the other columns are fixed.)

5. $\det(AB) = \det(A)\det(B)$.