Smooth morphisms

Definition 1 A morphism \(f : X \to Y \) is smooth if it is locally of finite presentation and formally smooth.

It is clear from the definition that \(I \) is an ideal in an \(R \)-algebra \(A \), then the map \(A^n(A) \to A^n(A/I) \) is surjective. This is in particular true if \(I \) is nilpotent, so that \(A^n \to \text{Spec } R \) is formally smooth, hence smooth.

Theorem 2 Let \(f : Z \to Y \) be a smooth morphism of schemes, let \(i : X \to Z \) be a closed immersion defined by a sheaf of ideals \(I \), which we assume to be of finite type. Then the following are equivalent:

1. \(X/Y \) is smooth.
2. The map \(I/I^2 \to i^* \Omega_{Z/Y} \) is injective and locally split.

Proof: Let \(T \to T' \) be an first order thickening of affine \(Y \)-schemes, with ideal \(I_T, h : T \to X \) be a morphism. Since \(Z/Y \) is smooth, \(h \) can be deformed to a map \(h' : T \to Z \). We need \(h' \) to factor through \(X \), i.e., we need

\[
h'' : I_X \to h_* I_T
\]
to be zero. Since \(I_T^2 = 0 \), this map factors through \(I_X/I_X^2 \). Splitting

\[
\sigma : i^* \Omega_{Z/Y} \to I_X/I_X^2
\]
composed with \(h'' \) gives

\[
\Omega_{Z/Y} \to h_* I_T.
\]
Use this to change the deformation \(h' \) to a new one which works.

For the converse, look at the first infinitesimal nbd. \(X_1 \) of \(X \) in \(Z \). Smoothness gives a deformation \(X_1 \to X \), and we use this to get a section as before.

Corollary 3 If \(X/Y \) is smooth, \(\Omega_{X/Y} \) is locally free.

Corollary 4 Let \(Z/Y \) be a smooth morphism and let \(i : X \to Z \) be a closed immersion with ideal \(I \), and let \(x \) be a point of \(X \). Then the following are equivalent:

1. There is an open neighborhood \(U \) of \(x \) which is smooth over \(Y \).
2. The map \(I(x) \to \Omega_{Z/Y}(x) \) induced by \(d \) is injective.

Proof: Suppose (2) holds. Choose a basis for the \(k \)-vector space \(I/mI \) and lift it to a sequence \((a_1, \ldots, a_r)\) in \(I_x \). By Nakayama’s lemma, this sequence generates \(I_x \). By hypothesis, the image of \((a_1, \ldots, a_r)\) in \(\Omega_{Z/k}(x) \) is linearly independent, and hence can be extended to a basis \(\omega(x) \) for \(\Omega_{Z/k}(x) \). Since \(Z/k \) is smooth, \(\Omega_{Z/k,x} \) is a free \(\mathcal{O}_{Z,x} \)-module, any lift \(\omega \) of \(\omega(x) \) to \(\Omega_{Z/k,x} \) will be a basis. It follows that the map \(I_x/I_x^2 \to i^* \Omega_{Z/k,x} \) is injective and locally split. The same holds in some neighborhood of \(x \), so (1) follows from Theorem 2. The proof that (1) implies (2) is immediate from this theorem.
Theorem 5 Let $X \to Z \to Y$ be morphisms of schemes. Assume that X/Y and Z/Y are smooth. Then X/Z is smooth if and only if locally on X the map $g^*\Omega_{Z/Y} \to \Omega_{X/Y}$ is injective and locally split.

Corollary 6 Let $X \to Y$ be a smooth morphism. Then, locally on X, there exists an étale factorization $X \to \mathbb{A}^n_Y \to Y$ of X/Y.

Proof: Let x be a point of X. The image of $\mathcal{O}_{X,x} \to \Omega_{X/Y}(x)$ generates the $k(x)$-vector space $\Omega_{X/Y}(x)$, so there exists a sequence (a_1, \ldots, a_n) in $\mathcal{O}_{X,x}$ whose image is a basis for $\Omega_{X/Y}(x)$. Get map $g: X \to \mathbb{A}^n_Y$ with $g^*t_i = a_i$ and $g^*dt_i = da_i$. Then $g^*\Omega_{\mathbb{A}^n_Y/Y} \to \Omega_{X/Y}$ is an isomorphism. By the previous result, X/Y is smooth, and since $\Omega_{X/\mathbb{A}^n_Y} = 0$, it is also unramified.

Example 7 Let X be the closed subscheme of affine two space over $\mathbb{Z}[t]$ defined by $(x_1^3 + x_2^3 + 1 - 3tx_1x_2)$. Compute where X/\mathbb{Z} is smooth and where $X/\text{Spec} \mathbb{Z}[t]$ is smooth. Do the same for the equation $t(x_1^4 + x_2^4 + 1) − 4x_1x_2x_3$, and for $t(x_1^4 + x_2^3 + 1) − 4x_1x_2x_3$.

2