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Definition: A Jordan block is a square matrix B whose diagonal entries
consist of a single scalar λ, whose superdiagonal entires are all 1, and all of
whose other entries vanish. For example:

λ 1 0 0 · · · 0
0 λ 1 0 · · · 0
0 0 λ 1 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 λ


Theorem: Let T be a linear operator on a finite dimensional vector space

V . Suppose that the characteristic polynomial of V splits. Then there exists
a basis for T such that [T ]β is a direct sum of Jordan blocks.

The first step in the proof of this theorem is to use the direct sum decom-
position of V into generalized eigenspaces Kλ. Then it suffices to prove the
theorem for the restriction of T to each Kλ. On Kλ, let Sλ := T − λI. If we
can find a basis β of Kλ with respect to which Sλ is a sum of Jordan blocks,
then the same will be true for T . On Kλ, there exists an r such that Sr

λ = 0.
Thus it suffices to consider the special case of operators with this property.

Let V be a finite dimensional vector space over a field F . A linear operator
N : V → V is said to be nilpotent if N r = 0 for some positive integer r. Let
N be a nilpotent operator on a finite dimensional vector space V . For each
i, let Ri be the image of N i. Each Ri is a linear subspace of V and is
N -invariant, and 0 = Rr ⊆ Rr−1 · · · ⊆ R1 ⊆ V . Since N is nilpotent it
is not injective (unless V = 0). Thus the kernel K of N is not zero and
dim R1 = dim V − dim K < dim V .

Let (v1, v2, · · · vs) be a basis for V Then [N ]β is a Jordan block if and only
if N(v1) = 0, N(v2) = v1, and N(vi) = vi−1 for all i > 1. This motivates the
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following definition.
Definition: An N-cycle is a sequence (v1, v2, · · · , vs) of nonzero vectors

such that N(vi) = vi−1 for all i > 1 and N(v1) = 0.
If (v1, · · · , vs) is an N -cycle, then v1 = N s−1(vs), so v1 ∈ Rs−1. Conversely,

if v ∈ Rs−1, say v = Rs−1(x), then (Rs−1(x), Rs−2(x), · · ·x) is an N -cycle
whose initial vector is v. If v belongs to Rs−1 but not to Rs, then s is the
length of the longest N -cycle starting with v.

Definition: An N -cycle (v1, · · · , vs) is maximal if v1 6∈ Rs.
It is clear that every nonzero element of the kernel K of N is contained

in some maximal N -cycle.
Lemma: Let (γ1, γ2, · · · γp) be a sequence of N -cycles. Then if the cor-

responding sequence of initial vectors is linearly independent, so is the con-
catenated sequence γ1 ∪ γ2 ∪ · · · ∪ γp.

Proof: Say γi = (vi,1, vi,2, · · · vi,ni
). Our assumption is that the sequence

(v1,1, v2,1, · · · , vp,1) is linearly independent, and we want to prove that the
entire (multi-indexed) sequece (vi,j) is linearly independent. We prove this
by induction on the maximum of the ni’s. If all the ni’s are 1, there is
nothing to prove, since we assumed that the sequence of initial vectors is
linearly independent. For the induction step, for each i let γ′

i be the (possibly
empty) Jordan cycle obtained by omitting the last term. The induction
assumption says that the union of these is linearly independent. Suppose
that

∑
ai,jvi,j = 0. Applying N , we deduce that

∑
ai,jNvi,j = 0, i.e., that∑

i,j ai,jvi−1,j = 0, where here for each j, i ranges between 2 and ni. This is the
sum over the corresponding truncated cycles γ′

i. The induction assumption
says that ∪γ′

i is linearly independent, so ai,j = 0 for i ≥ 2. Thus the original
sum reduces to a linear combination of the inital vectors, which we assumed
to be linearly independent. Hence each a1,j = 0 as well.

Recall that we have linear subspaces 0 ⊆ Rr ⊆ Rr−1 ⊆ · · ·V . Consider
the corresponding sequence of subspaces of K.

0 = Rr ∩K ⊆ Rr−1 ∩K ⊆ · · · ⊆ R1 ∩K ⊆ K.

We shall say that a basis α of K is adapted to N if for each i, α ∩ Ri is a
basis of Ri ∩K. It is clear that such bases always exist: start with a basis
for Rr−1, extend it to a basis for Rr−2, and continue.

Definition: A sequence of maximal N -cycles (γ1, · · · γq) is full if the
corresponding sequence of inital vectors (v1, · · · , vq) is a basis of K which is
adapted to N .
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It is clear that full sequences of N -cycles exist: start with a basis for K
which is adapted to N , and for each vector v in the basis, find a a maximal
cycle starting with v.

Theorem: Every full sequence of maximal N -cycles forms a basis for V .

Proof: Let (γ1, γ2, · · · γp) be a full sequence of maximal N -cycles. By as-
sumption, the corresponding sequence of initial vectors is linearly indepen-
dent, and hence by the lemma, the concatenation of γi’s is linearly indepen-
dent. It suffices to show that it also spans V . We do this by induction on the
smallest r such that N r = 0. If r = 1, then V = K and there is nothing to
prove, since we assumed that the initial vectors span K. Let V ′ := Im(N)
and for each i, let γ′

i be γi with the last element omitted. In fact, γ′
i = N(γi),

with zero omitted. Let N ′ be the restriction of N to V ′. Each γ′
i is contained

in V ′ and is a maximal Jordan cycle for N ′. Furthermore, γ′
i is empty only if

γi has length one, which is true only if its initial (and only) vector does not
belong to V ′. Thus the sequence of initial vectors of γ′

i contains all the initial
vectors of the original sequence which belong to V ′. Let p′ be the number
of nonempty γ′

i’s. It follows that the sequence (γ′
1, · · · γ′

p′) is maximal and
full for N ′. By the induction assumption, it spans V ′. Now let W be the
span of the all the γi’s. Note that by construction, W contains all of K.
Furthermore, the image of W under N contains all the γ′

i’s and hence all of
V ′ = Im(N). But then dim W = dim K + dim Im(N) = dim V , and hence
W = V .

Remark: For each i, let di denote the dimension of Ri and let hi :=
di−1 − di. If α is any basis for K adapted to N , then di is the number of
elements of α which lie in Ri and so hi is the number of elements of α which
lie in Ri−1 but not in Ri. Corresponding to each such element there will be
a maximal N -cycle of length i. Thus if β is the basis obtained as above, the
corresponding matrix [N ]β will have exactly hi Jordan blocks of length i.

Let V and V ′ be two finite dimensional vector spaces over F , and let
T be an operator on V and T ′ an operator on V ′. Then T and T ′ are
sometimes said to be similar if there exists an isomorphism Q: V → V ′ such
that T ′ ◦Q = Q ◦ T , i.e., T ′ = Q ◦ T ◦Q−1.

Theorem: Suppose that fT (x) and fT ′(x) split. Choose bases β for V
and β′ for V ′ such that A := [T ]β and A′ := [T ′]β′ are direct sums of Jordan
blocks. Then T and T ′ are similar if and only if for each λ ∈ F and each
integer s, the number of Jordan blocks of A with eigenvalue λ and length s
is the same as the corresponding number for A′.
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Proof: Suppose that T and T ′ are similar, and that Q is an isomorphism
V → V ′ such that T ′ ◦ Q = Q ◦ T . It follows that T and T ′ have teh
same characteristic polynomial. For each root λ, let Sλ := T − λIV and let
S ′

λ := T ′ − λIV ′ . Then it is also true that S ′
λ ◦ Q = Q ◦ Sλ, and also that

(S ′
λ)

i ◦ Q = Q ◦ (Sλ)
i for all i. Then Q maps Eλ := Ker(Sλ) isomorphically

to E ′
λ := Ker(S ′

λ) for all λ, and also Ri
λ := Im(Si

λ) isomorphically to R′i
λ :=

Im(S ′i
λ ) for all i. Hence it maps Eλ ∩ Ri

λ isomorphically to E ′
λ ∩ R′i

λ for all
i and all λ. Hence these spaces have the same dimension: di

λ = d′iλ for all i.
But it follows from the remark above that di−1

λ − di
λ is the number of Jordan

blocks in the Jordan normal form for T with eigenvalue λ and length i. Since
the same is true for T ′, we see that these numbers agree.

The converse is easy to prove. If the numbers for A and A′ are equal then
we can rearrange the basis β′ so that the matrices A and A′ are in fact equal
to each other. The basis β defines an isomorphism φβ: V → F n such that
LA ◦ φβ = φβ ◦ T , and β′ defines an isomorphism φβ′ : V ′ → F n such that
LA′ ◦ φβ′ = φβ′ ◦ T ′. Now take Q := φ′−1

β ◦ φβ: V → V ′.
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