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1 Introduction

Set up:
Let Y be a closed, orientable 3-manifold, and let K : S1 ↪→ Y be a knot. In knot theory and 3-
manifold theory, there are two major types of problems: geographical, which is concerned with which
manifolds may be constructed, and botanical, which is concerned with how one could construct a
fixed manifold from another. I.e., where can you go, and how you can get there.

Question. What manifolds can be created by doing surgery on a knot in S3? More precisely, what
is Yn(U) or Yn(K)?

Question. What surgeries give us a certain manifold? More precisely, what are the restraints on
n and k such that Yn(K) ≃ M for a particular M?

Remark 1. Y = S3, K = U and n = 0, we get S2 × S1.

Proof. Recall the procedure of doing surgery. Identify a canonical seifert longitude and
a meridian of a tubular neighborhood of k. Such a tubular neighborhood has boundary
homeomorphic to S1×S1. We may remove the neighborhood and glue it back in by an
automorphism of the boundary, which homologically is governed by a choice of linear
combination of l and m to map m to: m 7→ pm+ ql. In the case of p/q = 0, we identify
m with Seifert longitude, which bounds a disk in the complement of N(K). The result
is (D2 ∪S1 D2)× S1 = S2 × S1.

Question. What about other K, n? Precisely, when can surgery on a knot in S3 produce S2×S1?
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1 INTRODUCTION

Theorem 1.1 (Gabai, ’87). S3
0(K) ≃ S2 × S1 if and only if K is the unknot.

Remark 2. What about S3
n(U)? These are the lens spaces L(n, 1). These are definitively not

S2 × S1, since they have different homology groups. And in the case that we are dealing with
S3
n(K) where n ̸= 0 and K ̸= U , Kirby calculus tells you that it can be expressed as integral

surgery along a bunch of (possibly linked) unknots, which I suppose is going to probably differ
from S0(U) anyway.

So, how do we generalize this further? The proof of Gabai’s Property R theorem theorem uses taut
foliations. However, this was very particular to the case of S3, and so not generalizable in that
direction.

Remark 3. An orientable 3-manifold M contains a nonseparating S2 if and only if it has an S2×S1

summand.

Proof. Let’s suppose first that M is prime, i.e. cannot be written as a nontrivial
connect sum. Then certainly if M = S2 × S1, then S2 × {p} is a nonseparating 2-
sphere. Indeed, the complement is S2 × I, which is connected. On the other hand,
suppose that M contains a nonseparating S2. The idea is to use this nonseparatingness
to build up a tubular neighborhood of S2 into a copy of S2 × S1, and then see the
remainder of the manifold as a connect sum with this space.

Lemma 1.2. S2 ↪→ M is a nonseparating 2-sphere if and only if there exists a loop ℓ ⊂ M that
intersects S2 exactly once.

Proof. Suppose S2 ↪→ M is nonseparating. Take a small arc intersecting S2 trans-
versely. Then the end points lie in the complement of S2 in M . Since M§2 is connected,
we can connect the two end points of M with an arc, closing up the first arc to make
a loop. Now suppose that S2 is separating. Then S2 divides M into two connected
components. Any loop intersecting S2 transversely has to alternate between these com-
ponents (e.g. interior to exterior to interior), and so for the sake of closing up must
intersect the sphere an even number of times.
With this lemma established, take a tubular neighborhood of S2 ↪→ M , S2 × (−ϵ, ϵ).
Since S2 is non-separating, we can find a loop that intersects S2 transversely, and
exactly once. Take a tubular neighborhood of the part of this loop outside S2’s tubular
neighborhood. Adjusting its width if necessary, we can arrange that this D2 × I meets
S2 × (−ϵ, ϵ) in two small disks in S2 × {±ϵ}.
Define X := (S62 × (−ϵ, ϵ) ∪ (D2 × I). Note that ∂X is homeomorphic to S2, since
∂X = (S2 \D2)×{−ϵ}∪ (∂D2× [0, 1])∪ (S2 \D2)×{ϵ}. Now, since M is a connected,
compact, oriented 3-manifold, M −X and X are also compact. We may express

M = X ∪∂X (M \X).

In other words, we may express M as a connect sum. Since M is prime, it must be that
M \ X is B3. If you keep track of the gluing maps through this, I think you end up
gluing in a 3-ball that completes the D2× I part to an S2× I part, giving S2×S1.
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In 2020, Hom and Lidman generalized Gabai’s Property R theorem to rational homology spheres:

Theorem 1.3 (Generalized Property R Theorem for QHS3). If 0-framed surgery on a nullho-
motopic knot K ⊂ Y has a non-separating 2-sphere, then K is the unknot.

In other words, if Y0(K) ≃ N#S2 × S1 and Y ∈ QHS3, then K is the unknot. The converse is
also true: by definition, the unknot by definition must bound a disk, and so is nullhomotopic in
Y . In particular, this disk allows us to zoom down into a B3 neighborhood of K in Y to perform
0-surgery. This creates an S2 × S1 summand which is connect sum to the complement of the B3

neighborhood.

Remark 4. Nullhomologous means that K is the boundary of some two cell, nullhomotopic means
that it can be continuously deformed through the space into a point. All nullhomotopic knots are
nullhomologous, but not all nullhomologous knots are nullhomotopic. In S3 these are equivalent,
but in other manifolds this may not be the case. In fact, all knots in S3 are nullhomotopic, because
π1(S

3) = H1(S
3) = 0. But in other manifolds, just because a knot is nullhomotopic, does not mean

that this gives an isotopy to the unknot. Being the unknot means it bounds a disk, which is an
even more particular condition on nullhomotopy, since the contraction map should cut out a disk,
not just any old weird space (e.g. think of a shrinking trefoil).

2 Gabai’s Property R

Theorem 2.1 (Gabai, ’87). S3
0(K) ≃ S2 × S1 if and only if K is the unknot.

Proof.

1. If S is a minimal genus Seifert surface for a knot k in S3, then there exists a taut finite depth
foliation F of S3 \N(K) such that S is a leaf of F and F |∂N(K) is a foliation by circles.

2. Doing 0-surgery along K is equivalent to filling each longitude of the knot complement in
with disks. Relative to the leaves, what this means is that we are attaching to each leaf a
disk, closing up the submanifolds.

3. The manifold Y0(K) obtained by performing 0-surgery to a knot K ↪→ S3 has a taut finite
depth foliation F such that K (viewed in M) is transverse to F and intersects every leaf of
F . In particular, F has a compact leaf S of genus equal to the genus of K.

4. M := Y0(K) is obtained by performing 0-surgery on a knot K in S3, then M is prime and

g(K) = min{g(S) | S is an embedded, oriented, nonseparating surface}

5. It is this last fact that causes K to be the unknot. S2×S1 is prime, and we of course see that
there is an S2 nonseparating surface in it. So g(K) ≤ 0 =⇒ g(K) = 0. So K is the unknot.
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3 Hom and Lidman’s Generalization

Hom and Lidman’s proof makes use of Heegaard Floer Homology with twisted coefficients. Before
we get into what that means, let me just state the result that they proved:

Theorem 3.1. Let Y ∈ QHS3 and K a nullhomologous knot in Y . Suppose that Y0(K) =

N#S2 × S1. Then if dim(ĤF (N)) = dim(ĤF (Y )), then N = Y and K is the unknot.

Otherwise, dim(ĤF (N)) ≤ dim(ĤF (Y )).

Before talking about the proof, let me say why this implies theorem 1.3. Suppose that K is a
nullhomotopic knot in Y such that Y0(K) contains a nonseparating 2-sphere. Then in particular,
by remark 3, we know that Y0(K) must have a S2 ×S1 summand. In ADD SOURCE, under these
hypotheses it’s shown that N must be Y , i.e. Y0(K) ≃ Y#S2 ×S1. So we know that we are in the

case that dim(ĤF (N)) = dim(ĤF (N)). Therefore by theorem 1.3, K must be the unknot.

3.1 Knot Floer Homology

Definition 3.2 (Knot Handlebody). The standard diagram for a knot projection. Fix a knot
projection D for K in R2 , together with a distinguished edge adjoining the infinite region in the
projection complement. The edge is distinguished by placing a star somewhere on the edge. We
call this data a decorated knot projection of K. To a decorated knot projection, we can associate
a Heegaard diagram representing K, as follows. First, singularize the projection, so that the
crossings are actually double-points. Next, take a regular neighborhood of the resulting planar
graph, to obtain a handlebody H embedded in R2 ⊂ S3. The regions in the complement of the
graph in the plane have two distinguished regions that adjoin the marked edge, one of which is the
infinite region in R2 . For each bounded region in the graph complement, there is a corresponding
α-circle. In a neighborhood of each crossing, we associate a β-circle.

Definition 3.3. Let K ⊂ S3 be an oriented knot. There are several different variants of the knot
Floer homology of K. The simplest is the hat version, which takes the form of a bi-graded, finitely
generated Abelian group

ĤFK(K) =
⊕
i,s∈Z

ĤFKi(K)

Suppose K ⊂ Y is a null-homologous knot in a rational homology 3–sphere, F is a fixed Seifert
surface. There is a compatible doubly pointed Heegaard diagram (Σ, α, β, w, z) for the knot K.
This gives rise to a map from intersection points between the two tori Tα ∩ Tβ to relative Spinc
structures on Y \K sw,z : Tα∩Tβ → Spinc(Y0(K)). For each Spinc structure s on Y , the knot chain
complex C(s) = CFK∞(Y,K;S) is a free abelian group generated by [x, i, j] ∈ (TαcapTβ) × Z2,
where the ∂ map is a certain count of holomorphic whitney disks taking into account the bigrading.

3.2 HFH Mapping Cone Formula

3.3 Proof of theorem

General Idea. 1. Key fact:
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g(K) = min{s | v̂i,⋆ is an isomorphsim for all i ≥ s, t ∈ Spinc(Y )}

2. Idea is to show that if Y0(K) has an S2 × S1 summand, then a certain homologically defined
map v̂0,⋆ + ĥs,⋆ has to be 0. Basically, your maps v̂ and ĥ are defined in such a way that

HF ◦(Y0(K), ts) ∼= H∗(Cone(v
◦
s + h◦s))

3. This map is a sum of two maps, and since we’re in F2, it must be then that these two maps
are equal: v̂0,⋆ = ĥs,⋆

4. Raising this to twisted coefficients, one can show that the map v̂0,⋆+T ĥs,⋆ is an isomorphism.

But since v̂0,⋆ = ĥs,⋆, v̂0,⋆ + T ĥs,⋆ is an isomorphism, so v̂0,⋆ is an ismorphism.

5. So if you can show that v̂0,⋆ is an isomorphism, then by the factoring property of these maps
v̂s on a chain level, then v̂s,⋆ must be surjective.

6. Then if you can show that dim(dom(v̂s,⋆)) = dim(codom(v̂s,⋆)), surjectivity plus this tells you
that v̂s,⋆ is also an isomorphism.

7. Showing that the dimensions are the same is also a homological argument, combining the idea
of the homology of the cone with the other key fact, which is thatHF+(Y0(K), ts; F [[T, T

−1) =
0 - the HF+ homology of a 0-surgery vanishes over twisted coefficients:

If M is a three-manifold which contains a non-separating two-sphere S, then

HF ◦(M ; F [[T, T−1]) = 0,

where T denotes a generator of H1 of the S2 × S1 summand.

4 Li’s Generalization
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