
Midterm 1 Précis

MATH 55 Spring 2025

Instructor: James Demmel

1 Logic and Proofs

1. Proposition

(a) Logical Propositions, Compound Operations, Condi-
tionals and Biconditionals, Truth Tables

p q ¬p p ∨ q p ∧ q p⊕ q p → q p ↔ q

T T F T T F T T

T F F T F T F F

F T T T F T T F

F F T F F F T T

(b) Tautologies and Contradictions

p p ∨ ¬p p ∧ ¬p

T T F

F T F.

(c) Logical Equivalence Rules

Equivalence Name

p ∧ T ≡ p Identity laws

p ∨ F ≡ p

p ∨ T ≡ T Domination laws

p ∧ F ≡ F

p ∨ p ≡ p Idempotent laws

p ∧ p ≡ p

¬(¬p) ≡ p Double negation law

p ∨ q ≡ q ∨ p Commutative laws

p ∧ q ∧ q ∨ p Commutative laws

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r) Associative laws

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) Distributive laws

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

¬(p ∧ q) ≡ ¬p ∨ ¬q De Morgan’s laws

¬(p ∨ q) ≡ ¬p ∧ ¬q

p ∨ (p ∧ q) ≡ p Absorption laws

p ∧ (p ∨ q) ≡ p

p ∨ ¬p ≡ T Negation laws

p ∧ ¬p ≡ F

2. Predicates and Quantifiers

(a) quantifiers table

Statement True when... False when...

∀xP (x) P (x) is true for ev-
ery x.

There is an x for
which P (x) is false.

∃xP (x) There is an x for
which P (x) is true.

P (x) is false for ev-
ery x.

(b) De Morgan’s Laws for Quantifiers

Negation Equivalent Negation true
when...

Negation false
when...

¬∃xP (x) ∀x¬P (x) For every x,
P (x) is false.

There is an
x for which
P (x) is true.

¬∀xP (x) ∃x¬P (x) There is an
x for which
P (x) is false.

P (x) is true
for every x.

(c) Quantifications of Two Variables.

Statement True when... False when...

∀x∀yP (x, y) P (x, y) true for ev-
ery pair x, y.

There is a pair x, y
for which P (x, y) is
false.

∀y∀xP (x, y)

∀x∃yP (x, y) For every x there
is a y for which
P (x, y) is true.

There is an x such
that P (x, y) is false
for every y.

∃x∀yP (x, y) There is an x for
which P (x, y) is
true for every y.

For every x there
is a y for which
P (x, y) is false.

∃x∃yP (x, y) There is a pair x, y
for which P (x, y) is
true.

P (x, y) is false for
every pair x, y.



3. Rules of Inference

(a) Rules of Inference Table

Tautology Name (not important)

(p ∧ (p → q)) → q Modus ponens

(¬q ∧ (p → q) → ¬p Modus tollens

((p → q) ∧ (q → r)) → (p → r) Hypothetical syllogism

((p ∨ q) ∧ ¬p) → q Disjunctive syllogism

p → (p ∨ q) Addition

(p ∧ q) → p Simplification

((p) ∧ (q)) → (p ∧ q) Conjunction

((p ∨ q) ∧ (¬p ∨ r)) → (q ∨ r) Resolution

(b) Rules of Inference for Quantified Statements.

Rule of Inference Name

∀xP (x) =⇒ P (c)
for some element c

Universal instantiation

P (c) for an arbitrary
c =⇒ ∀xP (x)

Universal generalization

∃xP (x) =⇒ P (c)
for some element c

Existential instantiation

P (c) for some ele-
ment c =⇒ ∃xP (x)

Existential generaliza-
tion.

4. Proof Strategies: direct, contraposition, contradiction.

2 Sets

1. Set Definitions

Dfn (Set). Collection of unordered distinct objects A. El-
ements a ∈ A are members of the set.

Dfn (Subset). A ⊆ B iff a ∈ A =⇒ a ∈ B. A ⊂ B is a
proper subset of A if A ⊆ B, but ∃b ∈ B s.t. b /∈ A.

Set Elements Name

∅ - Empty set

N {0, 1, 2, 3, ...} Natural numbers

Z {...,−2,−1, 0, 1, 2, ...} Integers

Z+ {1, 2, 3, ...} Positive integers

Q {r | r = p/q, p, q ∈ Z} Rational numbers

R - Real numbers

R+ {r ∈ R | r > 0} Positive real numbers

C {a+ bi | a, b ∈ R} Complex numbers

[a, b] = {x ∈ R | a ≤ x ≤ b}

(a, b) = {x ∈ R | a < x < b}

[a, b) = {x ∈ R | a ≤ x < b}

(a, b] = {x ∈ R | a < x ≤ b}

2. Set Operations

Dfn (Set Operations).

• P(S) = {U | U ⊆ S}
• A×B = {(a, b) | a ∈ A ∧ b ∈ B}
• A ∪B = {x | x ∈ A ∨ x ∈ B}
• A ∩B = {x | x ∈ A ∧ x ∈ B}
• A = {x | x /∈ A}
• A \B = A−B = {x | x ∈ A ∧ x /∈ B}

3. Set Laws

Identity Name

A ∩ U = A Identity laws

A∪ = A

A ∪ U = U Domination laws

A ∩ ∅ = ∅
A ∪A = A Idempotent laws

A ∩A = A

A = A Complementation laws

A ∪B = B ∪A Commutative laws

A ∩B = B ∩A

A ∪ (B ∪ C) = (A ∪B) ∪ C Associative laws

A ∩ (B ∩ C) = (A ∩B) ∩ C

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) Distributive laws

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

A ∩B = A ∪B De Morgan’s laws

A ∪B = A ∩B

A ∪ (A ∩B) = A Absorption laws

A ∩ (A ∪B) = A

A ∪A = U Complement laws

A ∩A = ∅

3 Functions

Dfn (Function). f : X → Y is an assigment of an element of
y to each element of x, f(x) = y. X domain, Y codomain.
Range/Image = f(X). Note: if f : X → Y , then at most one
element of y can be assigned to each x. If f1, f2 : A → R, then

(f1 + f2)(x) = f1(x) + f2(x), (f1f2)(x) = f1(x)f2(x).

Dfn (Properties).

• (1-1): f(x) = f(y) =⇒ x = y.

• (onto): ∀y ∈ Y, ∃x s.t. f(x) = y. I.e. f(X) = Y .

• (bijection): 1-1 and onto.

• (composition):f : X → Y , g : Y → Z, then g ◦ f : X →
Z, g ◦ f(x) = g(f(x)).

• (preimage):f : X → Y , S ⊆ Y . Then f−1(S) = {x ∈
X |f(x) ∈ S}.

• (inverse): f : X → Y a bijection. Then f−1 : Y → X s.t.
f ◦ f−1 = f−1 ◦ f = identity map x 7→ x.



4 Counting and Cardinality

Dfn (Cardinality). |A| = number of elements in A.

• (finite): |A| < ∞

• (countable): ∃f : A → N bijection |A| = ℵ0

• (uncountable): A not countable.

Prop (Union/intersection). A,B countable then

• A ∪B countable

• A ∩B countable

Prop (Countable union). A countable, {Ba}a∈A, Ba ∀a ∈ A,
then ∪a∈ABa countable.

Prop (Cartesian product). A,B countable =⇒ A × B count-
able.

5 Divisibility and Modular Arithmetic

Dfn (Divisibility). a, b ∈ Z. a|b iff ∃n ∈ Z s.t. b = an.

• a|b, a|c =⇒ a|(b+ c)

• a|b =⇒ a|bc ∀c ∈ Z

• a|b ∧ b|c =⇒ a|c

Thm (Division Algorithm). a, d ∈ Z, d > 0. ∃!q, r ∈ Z s.t.
0 ≤ r < d and a = dq + r.

q = div d, r = a mod d

Thm (Laws of Modular Arithmetic).

• (a+ b) mod m = ((a mod m) + (b mod m)) mod m

• ab mod m = (a mod m)(b mod m) mod m

Thm (Base Representation). b, n ∈ Z+, b > 1. ∃! representation
n = akb

k+ak−1b
k−1+ ...+a1b+a0 where k ≥ 0 and ∀i = 1, ..., k,

0 ≤ ai < b, ak > 0.

Dfn (Congruence). a, b,m ∈ Z, m > 0. Then a ≡ b (mod m) iff
a mod m = amod m.

Dfn (Prime). p ∈ Z+ \ {1} prime if the only positive factors of
p are 1 and p. Otherwise composite.

Thm (Fundamental Theorem of Arithmetic). a ∈ Z+. Then
∃!p1, ..., pk primes and n1, ..., nk ∈ N such that a = pn1

1 pn2
2 . . . pnk

k .

Dfn (gcd and lcm). a, b ∈ Z+, b ̸= 0.

• g := gcd(a, b) satisfies g|a ∧ g|b and g maximal.

• a, b relatively prime iff gcd(a, b) = 1.

• l := lcm(a, b) satisfies a|l ∧ b|l and l minimal

• a · b = lcm(a, b) · gcd(a, b)

Thm (Bezout’s Lemma). a, b ∈ Z+, b ̸= 0. Then ∃s, t ∈ Z such
that sa+ tb = gcd(a, b).

Thm (Euclidean Algorithm). a, b ∈ Z+, b ̸= 0. Set b0 = b,
a0 = a.

x := a

y := b

while y \neq 0:

r := x mod y

x := y

y := r

return x

6 Congruence

Dfn (Congruence). ax ≡ b(mod m)

Dfn (Multiplicative inverse). a inverse of a modulo m iff āa ≡
1 (mod m). Unique up to multiples of m.

Prop (Euclidean gives inverses).

1) Run Euclidean alg on (a,m) and get as+tm=1

2) mod m to get as+tm \equiv 1 mod m

3) Observe as \equiv 1 mod m implies s=\bar{a}

Thm (Chinese Remainder Theorem). m1, ...,mn relatively prime
and > 1, a1, ..., an ∈ Z. ∃! solution x modulo m = m1...mn to
the system

{x ≡ ai (mod mi)}i=1,...,n.

Thm (Chinese Remainder Theorem Algorithm).

m := m_1m_2...m_n

for all k = 1, ..., n:

M_k := m/m_k

y_k := inverse(M_k mod m_k)

x := a_1M_1y_1 +...+ a_nM_ny_n

Thm (Fermat’s Little Theorem). p prime, a ∈ Z and p ̸ |a =⇒
ap−1 ≡ 1(mod p).
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