Midterm 1 Précis

MATH 55 Spring 2025

Instructor: James Demmel

1 Logic and Proofs

1. Proposition

_

(a) Logical Propositions, Compound Operations, Conditionals and Biconditionals, Truth Tables

p	q	$\neg p$	$p \vee q$	$p \wedge q$	$p\oplus q$	$p \to q$	$p \leftrightarrow q$
Т	Т	F	Т	Т	F	Т	Т
Т	F	F	Т	F	Т	F	F
F	Т	Т	Т	F	Т	Т	F
F	\mathbf{F}	Т	\mathbf{F}	F	F	Т	Т

(b) Tautologies and Contradictions

p	$p \vee \neg p$	$p \wedge \neg p$
Т	Т	F
\mathbf{F}	Т	F.

(c) Logical Equivalence Rules

Equivalence	Name
$p \wedge T \equiv p$	Identity laws
$p \vee F \equiv p$	
$p \lor T \equiv T$	Domination laws
$p \wedge F \equiv F$	
$p \lor p \equiv p$	Idempotent laws
$p \wedge p \equiv p$	
$\neg(\neg p) \equiv p$	Double negation law
$p \lor q \equiv q \lor p$	Commutative laws
$p \wedge q \wedge q \vee p$	Commutative laws
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive laws
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	
$\neg (p \land q) \equiv \neg p \lor \neg q$	De Morgan's laws
$\neg(p \lor q) \equiv \neg p \land \neg q$	
$p \lor (p \land q) \equiv p$	Absorption laws
$p \land (p \lor q) \equiv p$	
$p \vee \neg p \equiv T$	Negation laws
$p \wedge \neg p \equiv F$	

- 2. Predicates and Quantifiers
 - (a) quantifiers table

Statement	True when	False when
$\forall x P(x)$	P(x) is true for every x .	There is an x for which $P(x)$ is false.
$\exists x P(x)$	There is an x for which $P(x)$ is true.	P(x) is false for every x .

(b) De Morgan's Laws for Quantifiers

Negation	Equivalent	Negation true when	Negation false when
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x .

(c) Quantifications of Two Variables.

Statement	True when	False when
$\forall x \forall y P(x,y)$	P(x, y) true for every pair x, y .	There is a pair x, y for which $P(x, y)$ is false.
$\forall y \forall x P(x,y)$		
$\forall x \exists y P(x,y)$	For every x there is a y for which P(x, y) is true.	There is an x such that $P(x, y)$ is false for every y .
$\exists x \forall y P(x,y)$	There is an x for which $P(x, y)$ is true for every y .	For every x there is a y for which P(x, y) is false.
$\exists x \exists y P(x,y)$	There is a pair x, y for which $P(x, y)$ is true.	P(x, y) is false for every pair x, y .

- 3. Rules of Inference
 - (a) Rules of Inference Table

Tautology	Name (not important)
$(p \land (p \to q)) \to q$	Modus ponens
$(\neg q \land (p \to q) \to \neg p$	Modus tollens
$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism
$((p \lor q) \land \neg p) \to q$	Disjunctive syllogism
$p \to (p \lor q)$	Addition
$(p \wedge q) \to p$	Simplification
$((p) \land (q)) \to (p \land q)$	Conjunction
$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	Resolution

(b) Rules of Inference for Quantified Statements.

Rule of Inference	Name
$ \forall x P(x) \implies P(c) $ for some element c	Universal instantiation
$P(c) \text{ for an arbitrary} c \implies \forall x P(x)$	Universal generalization
$\exists x P(x) \implies P(c)$ for some element c	Existential instantiation
P(c) for some ele- ment $c \implies \exists x P(x)$	Existential generaliza- tion.

4. Proof Strategies: direct, contraposition, contradiction.

2 Sets

1. Set Definitions

Dfn (Set). Collection of unordered distinct objects A. Elements $a \in A$ are members of the set.

Dfn (Subset). $A \subseteq B$ iff $a \in A \implies a \in B$. $A \subset B$ is a proper subset of A if $A \subseteq B$, but $\exists b \in B$ s.t. $b \notin A$.

Set	Elements	Name
Ø	-	Empty set
\mathbb{N}	$\{0,1,2,3,\}$	Natural numbers
\mathbb{Z}	$\{,-2,-1,0,1,2,\}$	Integers
\mathbb{Z}^+	$\{1, 2, 3, \ldots\}$	Positive integers
\mathbb{Q}	$\{r \mid r = p/q, p, q \in \mathbb{Z}\}$	Rational numbers
\mathbb{R}	-	Real numbers
\mathbb{R}^+	$\{r\in\mathbb{R}\mid r>0\}$	Positive real numbers
\mathbb{C}	$\{a+bi \mid a, b \in \mathbb{R}\}$	Complex numbers

$$\begin{split} & [a,b] = \{x \in \mathbb{R} \mid a \le x \le b\} \\ & (a,b) = \{x \in \mathbb{R} \mid a < x < b\} \\ & [a,b) = \{x \in \mathbb{R} \mid a \le x < b\} \\ & (a,b] = \{x \in \mathbb{R} \mid a < x \le b\} \end{split}$$

2. Set Operations

Dfn (Set Operations).

- $\mathcal{P}(S) = \{ U \mid U \subseteq S \}$
- $A \times B = \{(a, b) \mid a \in A \land b \in B\}$
- $A \cup B = \{x \mid x \in A \lor x \in B\}$
- $\bullet \ A \cap B = \{x \mid x \in A \land x \in B\}$
- $\overline{A} = \{x \mid x \notin A\}$
- $A \setminus B = A B = \{x \mid x \in A \land x \notin B\}$

3. Set Laws

Name
Identity laws
Domination laws
Idempotent laws
Complementation laws
Commutative laws
Associative laws
Distributive laws
De Morgan's laws
Absorption laws
Complement laws

3 Functions

Dfn (Function). $f : X \to Y$ is an assignment of an element of y to each element of x, f(x) = y. X domain, Y codomain. Range/Image = f(X). Note: if $f : X \to Y$, then at most one element of y can be assigned to each x. If $f_1, f_2 : A \to \mathbb{R}$, then

$$(f_1 + f_2)(x) = f_1(x) + f_2(x), \quad (f_1 f_2)(x) = f_1(x) f_2(x).$$

Dfn (Properties).

- (1-1): $f(x) = f(y) \implies x = y$.
- (onto): $\forall y \in Y, \exists x \text{ s.t. } f(x) = y$. I.e. f(X) = Y.
- (bijection): 1-1 and onto.
- (composition): $f: X \to Y, g: Y \to Z$, then $g \circ f: X \to Z, g \circ f(x) = g(f(x))$.
- (preimage): $f : X \to Y, S \subseteq Y$. Then $f^{-1}(S) = \{x \in X | f(x) \in S\}$.
- (inverse): $f: X \to Y$ a bijection. Then $f^{-1}: Y \to X$ s.t. $f \circ f^{-1} = f^{-1} \circ f = \text{identity map } x \mapsto x.$

4 Counting and Cardinality

Dfn (Cardinality). |A| = number of elements in A.

- (finite): $|A| < \infty$
- (countable): $\exists f : A \to \mathbb{N}$ bijection $|A| = \aleph_0$
- (uncountable): A not countable.

Prop (Union/intersection). A, B countable then

- $A \cup B$ countable
- $A \cap B$ countable

Prop (Countable union). A countable, $\{B_a\}_{a \in A}$, $B_a \forall a \in A$, then $\bigcup_{a \in A} B_a$ countable.

Prop (Cartesian product). A, B countable $\implies A \times B$ countable.

5 Divisibility and Modular Arithmetic

Dfn (Divisibility). $a, b \in \mathbb{Z}$. a|b iff $\exists n \in \mathbb{Z}$ s.t. b = an.

- $a|b, a|c \implies a|(b+c)$
- $a|b \implies a|bc \ \forall c \in \mathbb{Z}$
- $a|b \wedge b|c \implies a|c$

Thm (Division Algorithm). $a, d \in \mathbb{Z}, d > 0$. $\exists !q, r \in \mathbb{Z}$ s.t. $0 \leq r < d$ and a = dq + r.

 $q = \operatorname{\mathbf{div}} d, \quad r = a \mod d$

Thm (Laws of Modular Arithmetic).

- $(a+b) \mod m = ((a \mod m) + (b \mod m)) \mod m$
- $ab \mod m = (a \mod m)(b \mod m) \mod m$

Thm (Base Representation). $b, n \in \mathbb{Z}^+, b > 1$. \exists ! representation $n = a_k b^k + a_{k-1} b^{k-1} + \ldots + a_1 b + a_0$ where $k \geq 0$ and $\forall i = 1, \ldots, k, 0 \leq a_i < b, a_k > 0$.

Dfn (Congruence). $a, b, m \in \mathbb{Z}, m > 0$. Then $a \equiv b \pmod{m}$ iff $a \mod m = a \mod m$.

Dfn (Prime). $p \in \mathbb{Z}^+ \setminus \{1\}$ **prime** if the only positive factors of p are 1 and p. Otherwise **composite**.

Thm (Fundamental Theorem of Arithmetic). $a \in \mathbb{Z}^+$. Then $\exists ! p_1, ..., p_k$ primes and $n_1, ..., n_k \in \mathbb{N}$ such that $a = p_1^{n_1} p_2^{n_2} \dots p_k^{n_k}$.

Dfn (gcd and lcm).
$$a, b \in \mathbb{Z}^+, b \neq 0$$
.

- $g := \gcd(a, b)$ satisfies $g|a \wedge g|b$ and g maximal.
- a, b relatively prime iff gcd(a, b) = 1.
- l := lcm(a, b) satisfies $a|l \wedge b|l$ and l minimal
- $a \cdot b = \operatorname{lcm}(a, b) \cdot \operatorname{gcd}(a, b)$

Thm (Bezout's Lemma). $a, b \in \mathbb{Z}^+, b \neq 0$. Then $\exists s, t \in \mathbb{Z}$ such that $sa + tb = \gcd(a, b)$.

Thm (Euclidean Algorithm). $a, b \in \mathbb{Z}^+, b \neq 0$. Set $b_0 = b$, $a_0 = a$.

```
x := a
y := b
while y \neq 0:
    r := x mod y
    x := y
    y := r
return x
```

6 Congruence

Dfn (Congruence). $ax \equiv b \pmod{m}$

Dfn (Multiplicative inverse). \overline{a} inverse of a modulo m iff $\overline{a}a \equiv 1 \pmod{m}$. Unique up to multiples of m.

Prop (Euclidean gives inverses).

- 1) Run Euclidean alg on (a,m) and get as+tm=1
- 2) mod m to get as+tm \equiv 1 mod m
- 3) Observe as \equiv 1 mod m implies s=\bar{a}

Thm (Chinese Remainder Theorem). $m_1, ..., m_n$ relatively prime and $> 1, a_1, ..., a_n \in \mathbb{Z}$. \exists ! solution x modulo $m = m_1 ... m_n$ to the system

$$\{x \equiv a_i \pmod{m_i}\}_{i=1,\dots,n}$$

Thm (Chinese Remainder Theorem Algorithm).

m := m_1m_2...m_n
for all k = 1, ..., n:
 M_k := m/m_k
 y_k := inverse(M_k mod m_k)
x := a_1M_1y_1 +...+ a_nM_ny_n

Thm (Fermat's Little Theorem). p prime, $a \in \mathbb{Z}$ and $p \not| a \implies a^{p-1} \equiv 1 \pmod{p}$.