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1. Introduction

Theorem 1.1 (Wall, 1964). If two simply-connected 4-manifolds X and Y are homeomorphic,
then X ˆ S2 and Y ˆ S2 are diffeomorphic.

Question. Does a similar result hold in the symplectic setting?

This question is attributed to Donaldson as problem 5 and has been an open problem for 25 years.

Definition 1.2. Two symplectic manifolds pX0, ω0q and pX1, ω1q are deformation equivalent if
there exists a diffeomorphism ψ : X0 Ñ X1 such that ψ˚ is homotopic to ω via a path of symplectic
forms.

Question (Donaldson’s 4-6). Suppose pX0, ω0q and pX1, ω1q are two closed, simply connected sym-
plectic 4-manifolds. Then the following are equivalent:

(1) X0 »diff X1,
(2) pX0, ω0q ˆ pS2, ωstdq »def eq. pX1, ω1q ˆ pS2, ωstdq.

The procedure by which we take a product with pS2, ωstdq is called stabilization. This question
appeared as a conjecture for the first time in Ruan and Tian’s paper in 1997. It became known as
the stabilizing conjecture.

Theorem 1.3 (Ruan-Tian, 1997). The stabilizing conjecture is true for simply connected rational
elliptic surfaces.

More supporting evidence for this conjecture is given by Ionel-Parker (1999), and YonSeung Cho
(2014). However, it was known early on that there exists symplectic 4-manifolds with non-
deformation equivalent symplectic forms. The question whether this behaviour could persist after
stabilization was not known though until the following result of Hirschi-Wang in 2024:
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Theorem 1.4 (Hirschi-Wang, 2024). There exist infinitely many examples of smooth, simply-
connected 4-manifolds admitting symplectic forms that remain inequivalent under stabilization.

More precisely, there exist infinitely many pairwise nonhomeomorphic smooth closed simply-connected
4-manifolds X admitting symplectic forms ω0 and ω1 so that the product forms ω0 ‘ pωstdq‘k and
ω1 ‘ pωstdq‘k are deformation inequivalent for any k ě 1.
In other words, the result of Hirschi and Wang gives a counterexample to the conjecture (1) ùñ (2).
In the other direction, they improved previously known results to the following:

Theorem 1.5. Let pX0, ω0q and pX1, ω1q be two closed, simply-connected symplectic manifolds
so that pX0, ω0q ˆ pS2, ωstdq »def eq. pX1, ω1q ˆ pS2, ωstdq. Then the Gromov-Witten invariants of
pX0, ω0q agree with those of pX1, ω1q up to homeomorphism.

As a corollary of this, we have that

Corollary 1.6. If pX0, ω0q and pX1, ω1q are as in the theorem above, and b`
2 pXiq ě 2, then their

Seiberg-Witten invariants are intertwined by a homeomorphism.

Remark 1. Both of the above results hold when replacing pS2, ωstdq with pS2, pωstdq‘kq

As a consequence of this remark, we have that

Corollary 1.7. In any dimension ě 6, there exist infinitely many smooth manifolds admitting
inequivalent symplectic forms.

The goal of this talk is to explain the first theorem that we stated by Hirschi-Wang. Time permit-
ting, we will discuss other aspects of their paper.

2. Background

The first question we should ask is why think about stabilization in the first place. Well, its certainly
a natural construction that gives compact higher dimensional manifolds in whichever category you
like. Off of this, a natural question to ask is how much of the original manifold’s structure is
retained after stabilizing? This question has been explored extensively in the geometric topology
setting. For example, it is known that any exotic structure on a closed smooth manifold vanishes
(i.e. is no longer exotic) under stabilization.
The second question we may ask is why is deformation equivalence the right notion to think about
equivalence of symplectic manifolds under stabilization?
Finally, before diving into the proof of the theorem, we need to introduce an important definition
that will help us make sense of deformation equivalence.

Definition 2.1 (Cohomology equivalence). A continuous map f : X Ñ X is called a cohomology
equivalence if it induces an isomorphism f˚ on singular cohomology with integral coefficients.

Definition 2.2 (Set of cohomology equivalences). Denote by GX,Y the set of cohomology equiva-
lences ψ of X ˆ Y satisfying:

(1) ψ preserves H2pX;Zq setwise,
(2) pr1 ˝ ψp¨, yq is a cohomology equivalence on X for all y P Y .

Note that in order to make sense of this, we’ll require that Y is path-connected. Then we may
treat H2pX;Zq as a subspace of H2pX ˆ Y ;Zq considered as a vector space.
The last question we may ask ourselves is why is this notion important?
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3. Main Result

The key theorem used in proving theorem 1.4 is the following:

Theorem 3.1. Let Σ be a closed surface with a symplectic form σ and X a simply-connected
4-manifold with nonvanishing signature. If ω0 and ω1 are two symplectic forms on X with c1pω0q

and c1pω1q in different orbits of action of cohomology equivalences of X on H2pX;Zq, then ω0‘σ‘k

and ω1 ‘ σ‘k on X ˆ Σk are deformation inequivalent for any k ě 1.

Proof. We’ll stick to k “ 1 for ease of notation, but this easily extends to k ě 2. Suppose for
contradiction’s sake that the above initial assumptions hold, but that ω0 ‘ σ and ω1 ‘ σ on X ˆΣ
are deformation equivalent. In particular, we assume σpXq ‰ 0. Let ψ : X ˆ Σ Ñ X ˆ Σ be a
diffeomorphism arising from the deformation equivalence.
Naturality of the Chern classes tells us that

c1pψ˚pω1 ‘ σqq “ ψ˚c1pω1 ‘ σq.

Moreover, by the fact that ψ˚pω1 ‘ σq is path connected to ω0 ‘ σ, we have that

c1pω0 ‘ σq “ ψ˚c1pω1 ‘ σq.

We gather then that the first Chern classes of ω0 ‘σ and ω1 ‘σ are related by the diffeomorphism
ψ. One can then show that for any ψ P DiffpX ˆ Σq, ψ P GX,Σ. Knowing this would then tell us
that c1pω0 ‘ σq and c1pω1 ‘ σq live in the same orbit of action of GX,Σ ñ H˚pX ˆ Σ;Zq. But this
is not true by the following proposition.

Proposition 3.2. Let X be a closed, simply connected 4-manifold with σpXq ‰ 0. Suppose also
that ω0 and ω1 are symplectic form on X such that c1pω0q and c1pω1q lie in different orbits of
action of cohomology equivalences of X on H2pX;Zq. Then the first Chern classes c1pω0 ‘ σq and
c1pω1 ‘ σq must also lie in different orbits of action of GX,Σ.

In other words, if we can show that for any ψ P DiffpX ˆ Σq, ψ P GX,Σ, then we will have a
contradiction. Our initial assumption will have to be wrong, so pXˆΣ, ω0 ‘σq will be deformation
inequivalent to pX ˆ Σ, ω1 ˆ σq.
So let’s prove that ψ P GX,Σ. Recall that ψ P GX,Σ if ψ maps H2pX;Zq to itself set-wise, and
pr1ψp¨, pq is a cohomology equivalence on X for all p P Σ.
Let’s start by showing that ψ preserves H2pX;Zq. Since Σ is a surface, p1pΣq vanishes - remember
it lives in the fourth cohomology group of Σ. Moreover, H˚pX ˆ Σ;Zq is torsion-free. Since
Pontryagin classes satisfy the Whitney formula up to 2-torsion, it follows that

p1pX ˆ Σq “ p1ppr˚
1 pTXq ‘ pr˚

2 pTΣqq

“ p1ppr˚
1 pTXqq Y p1ppr˚

2 pTΣqq

“ pr˚
1p1pXq

“ pr˚
1 p3σpXqq

“ 3σpXqPDprΣsq

The equalities are due to (1) the definition of the tangent space of a product manifold, (2) the
Whitney sum formula for Pontryagin classes, (3) naturality of Pontryagin classes, (4) the Hirzebruch
signature theorem for 4-manifolds.
Now, since diffeomorphisms preserve p1 andH˚pXˆΣ;Zq is gree, ψ˚rΣs “ ˘rΣs. Let α P H2pX;Zq.
We can think of H2p;Zq Ď H2pX ˆ Σ;Zq as a subspace, so that ψ˚α makes sense. We’d like to
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show that H2pX;Zq is preserved by ψ. A priori, ψ˚α “ α1 ` ah, where h is the algebraic dual of
rΣs. On one hand,

α X rΣs “ 0

where again we think of α P H2p;Zq Ď H2pX ˆ Σ;Zq. On the other hand,

˘α X rΣs “ α X ψ˚rΣs

“ ψ˚pψ˚pαq X rΣsq

“ ψ˚ppα1 ` ahq X rΣsq

“ ψ˚pahrΣsq

So that a “ 0. The equalities are due to (1) the fact that ψ˚rΣs “ ˘rΣs, (2) a standard identity
for the cap product, (3) by observation, and (4) by pairing.
In other words, we have shown that for any α P H2pX;Zq, ψ˚α P H2pX;Zq. So ψ˚ preserves
H2pX;Zq.
Now, let’s show the second part: that pr1ψp¨, pq is a cohomology equivalence on X for each p P Σ.

We define pψ : X Ñ X by pψpxq “ pr1px, pq for some arbitrary p P Σ. Since ψ˚rΣs “ ˘rΣs,
pψ must have degree ˘1. To see why this is, note that ψ is a diffeomorphism, and hence sense
ψ˚prX ˆ Σs Ñ ˘rX ˆ Σs, depending on whether ψ is orientation preserving or reversing. On the
other hand, we know that both homologies of X and Σ are free Z-modules, and so the Künneth
theorem says that rX ˆ Σs » rXs ‘ rΣs. So under this we have

I.e., ppr1 ˝ ψq˚rXs “ ˘rXs. In other words, pψ has degree ˘1. Thus, for any α, β P H2pX;Zq

pψ˚α Y pψ˚β “ pψ˚pα Y βq “ ˘α Y β.

So pψ preserves the cup product, and hence preserves H2pX;Zq as a ring???? This establishes that
pψ induces an isomorphism on cohomology - i.e. is a cohomology equivalence. □
For sake of time, we’re not going to prove proposition 3.2, but it can be shown using a similar idea
to the above.
We now use theorem 3.1 to prove theorem 1.4.
Proof.
Work of Smith in 2000 provides candidates that satisfy the conditions of theorem 3.1. This is all
that we need to show, then we will have theorem 1.4
Smith’s argument constructs candidates roughly as follows. Start with T 4 along with the standard
contact structure (?). He shows that you can perturb the symplectic structure, and then take the
symplectic fibre sum of the resulting symplectic manifold with pn`3q copies of the rational elliptic
surface Ep1q. The perturbation only happens at the level of the symplectic structure, and leaves
the diffeomorphism type of the underlying manifold Zn the same. However, we end up with n
symplectic structures on Zn whose Chern classes have coprime divisibilities. Moreover, if m ‰ n,
then Zm is not homeomorphic to Zn. So we get an infinite family of topologically distinct manifolds
that each carry sets of deformation inequivalent symplectic structures.
In particular, the fact that the Chern classes of the resulting symplectic structures have coprime
divisabilities means that they must lie in distinct orbits of action of cohomology equivalences. All
that is left to show is that the underlying manifold Zn has nonvanishing signature. Then we will
have satisfied all the conditions of theorem 3.1.
Let’s unpack the construction of Zn. It is the fibre sum of T 4 with pn ` 3q copies of Ep1q. In
particular, we can set up the gluing to be by an orientation preserving diffeomorphism of the

4



NANCY MAE EAGLES REFERENCES

attaching regions, so that the fibre sum gives us additivity of the signatures of its constituent
manifolds:

σpZnq “ σpT 4q ` pn` 3qσpEp1qq.

The Pontryagin classes behave similarly:

p1pZnq “ p1pT 4q ` pn` 3qp1pEp1qq.

Now, T 4 is a Riemann flat manifold, and so Chern-Weil theory tells us that p1pT 4q “ 0. On the
other hand, σpEp1qq “ ´8, and so the Hirzebruch signature theorem tells us that p1pEp1q “ ´24.
Hence,

xp1pZnq, rZnsy “ pn` 3qp´24q ‰ 0.

A second application of Hirzebruch signature theorem says then that σpZnq ‰ 0. We are done. □

4. Further aspects

There are other parts of this exposition can still be addressed:

(1) We can replace pΣ, σq with pΣk, σ‘kq for any k ě 1.
(2) Hirschi and Wang also make use of a second family of examples, which we could talk

about. In particular, they look at stabilizing with pCP k, ω‘k
FSq, and prove the same result

of theorem 1.4 in this setting.
(3) The reverse direction of the stabilizing conjecture is more subtle, and we could talk about

the product structure on Gromov Witten invariants that addresses this direction.
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