Discussion Worksheet Math 53 Worksheets for Fall 2023¹

MATH 53 Multivariable Calculus GSI : Ning Tang

Contents

1	Introduction - 8.23·····	1
2	Parametric equations - 8.25 · · · · · · · · · · · · · · · · · · ·	
3	Parametric equations, Tangents and Area - 8.28 · · · · · · · · · · · · · · · · · · ·	4
4	Polar coordinates - 8.30······	
5	Vectors, Dot product - 9.1 · · · · · · · · · · · · · · · · · · ·	
6	Cross product - 9.6	9
7	Lines and planes - 9.8 · · · · · · · · · · · · · · · · · · ·	
8	Lines and planes - 9.11 · · · · · · · · · · · · · · · · · ·	11
9	Vector functions, Space curves - 9.13 · · · · · · · · · · · · · · · · · · ·	12
10	Two variable functions, Tangent planes - 9.18 · · · · · · · · · · · · · · · · · · ·	
11	Continuity of functions, Limits, Differentials - 9.20· · · · · · · · · · · · · · · · · · ·	14
12	Chain Rule, Implicit Differentiation, Gradients - 9.28 · · · · · · · · · · · · · · · · · · ·	15
13	Maxima and minima - 10.2····································	
14	Global max/min, Lagrange multipliers - 10.6 · · · · · · · · · · · · · · · · · · ·	17
15	Iterated integrals, Double integrals - 10.9······	
16	More on double integrals - 10.11 · · · · · · · · · · · · · · · · · ·	
17	Change of variables, Jacobians - 10.16 · · · · · · · · · · · · · · · · · · ·	
18	Triple Integrals - 10.18	
19	More on triple integrals - 10.23 · · · · · · · · · · · · · · · · · · ·	
20	Applications of triple integrals, Vector fields - 10.25·····	
21	Vector fields, Line integrals - 10.30 · · · · · · · · · · · · · · · · · · ·	24
22	Fundamental Theorem of line integrals, Green's theorem - 11.1 · · · · · · · · · · · · · · · · ·	25
23	Curl and divergence, Parametric surfaces - 11.13 · · · · · · · · · · · · · · · · · · ·	
24	Surface area, Surface integrals - 11.15······	
25	Stokes Theorem - 11.27 · · · · · · · · · · · · · · · · · · ·	28
26	Divergence Theorem - 11.29 · · · · · · · · · · · · · · · · · · ·	
27	Solutions to selected triple integral problems · · · · · · · · · · · · · · · · · · ·	30
28	Acknowledgements·····	34

¹These worksheets are provided for the personal use of Fall 2023 MATH 53 DIS 106/109 students only.

1 Introduction - 8.23

Discussion Site: https://math.berkeley.edu/~ning_tang/math53_F23/index.html

1.1 Topics you will learn:

- (1) polar coordinates;
- (2) how to express curves, surfaces;
- (3) chain rule, partial derivative;
- (4) Lagrange multipliers, maxima and minima;
- (5) double integrals, iterated integrals, triple integrals;
- (6) line integrals, surface integrals;
- (7) Green's theorem, Stokes's Theorem, divergence theorem.

1.2 What you have learn correspondingly:

- (1) Catesian coordinates;
- (2) how to express a line;
- (3) derivatives of a single variable function;
- (4) how to find the maximum/minimum of a single variable function;
- (5) (in)definite integrals, improper integrals;
- (6) how to calculate the surface area of a surface of revolution;
- (7) integration by parts.

1.3 Trigonometric identities

- a) $\sin^2 x + \cos^2 x = 1;$
- b) $\sin^2 x = \frac{1}{2}(1 \cos 2x)$, $\cos^2 x = \frac{1}{2}(1 + \cos 2x)$;
- c) $\sin 2x = 2\sin x \cos x$, $\cos 2x = \cos^2 x \sin^2 x$;
- d) $\sin x \cos y = \frac{1}{2}(\sin(x-y) + \sin(x+y)),$ $\sin x \sin y = \frac{1}{2}(\cos(x-y) - \cos(x+y)),$ $\cos x \cos y = \frac{1}{2}(\cos(x-y) + \cos(x+y)).$

1.4 Arc Length Formula and Surface of Revolution

If f(x) is a function on [a, b] such that f'(x) is continuous on [a, b], then the arc length L of the curve y = f(x) (or x = g(y) as y goes from c to d, after inverting) is given by

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^{2}} dx = \int_{c}^{d} \sqrt{1 + [g'(y)]^{2}} dy,$$

and the surface area S of the solid from revolving y = f(x) as x goes from a to b (or, again, x = g(y) as y goes from c to d) about the x-axis is given by

$$S = 2\pi \int_{a}^{b} f(x)\sqrt{1 + [f'(x)]^{2}} dx = 2\pi \int_{c}^{d} y\sqrt{1 + [g'(y)]^{2}} dy.$$

The surface area obtained by revolving the same curve around the y-axis is given by

$$S = 2\pi \int_{a}^{b} x \sqrt{1 + [f'(x)]^{2}} dx = 2\pi \int_{c}^{d} g(y) \sqrt{1 + [g'(y)]^{2}}.$$

If f'(x) or g'(y) is discontinuous or undefined somewhere on [a, b] (including the ends a or b), the above integrals should be treated as indefinite, and the standard modifications of the integrals via limits must be applied.

1.5 A list of basic integrations you should grasp

a)
$$\int c \, dx = cx + C$$

g)
$$\int \cos x \, dx = \sin x + C$$

b)
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \text{ (where } n+1 \neq 0)$$

h)
$$\int \frac{1}{ax+b} dx = \frac{1}{a} \ln|ax+b| + C$$

c)
$$\int \frac{1}{x} dx = \ln|x| + C$$

i)
$$\int \frac{1}{\cos^2 x} \, dx = \tan x + C$$

$$d) \int e^x dx = e^x + C$$

$$j) \int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C$$

e)
$$\int a^x dx = \frac{a^x}{\ln a} + C$$

k)
$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + C$$

Substitution rule:

f) $\int \sin x \, dx = -\cos x + C$

$$\int f(g(x))g'(x) dx = \int f(u) du \quad (u = g(x), du = u'(x) dx)$$

Integration by parts:

$$\int f(x)g'(x) dx = f(x)g(x) - \int g(x)f'(x) dx$$

$\overline{\mathbf{2}}$ Parametric equations - $\mathbf{8.25}$

1 (1) Eliminate the parameter for the parametric equations to find a Cartesian equation of the curve; (2) Sketch the graph of the parametric curve and indicate with an arrow the direction in which the curve is traced as the parameter increases:

- [T, §11.1, #1] $x = 3t, y = 9t^2, -\infty < t < \infty$;
- [T, §11.1, #5] $x = \cos(2t)$, $y = \sin(2t)$, $0 \le t \le 2\pi$;
- [T, §11.1, #7] $x = 4\cos t, y = 2\sin t, 0 \le t \le 2\pi$;
- [T, §11.1, #13] x = t, $y = \sqrt{1 t^2}$, $-1 \le t \le 0$.

2 [§10.1, #21] Describe the motion of a particle with position

$$x = 5\sin t, \ y = 2\cos t, \ -\pi \le t \le 5\pi$$

as t varies in the given interval.

3 [§10.1, #24] Match the graphs of the parametric equations x = f(t) and y = g(t) in (a) - (d) with the parametric curves labeled I–IV. Give reasons for your choices.

4 [T, §11.1, #19] Find parametric equations and a parameter interval for the motion of a particle that starts at (a,0) and traces the circle $x^2 + y^2 = a^2$

- once clockwise.
- once counterclockwise.
- twice clockwise.
- twice counterclockwise.

(There are many ways to do these, so your answers may not be the same.)

3 Parametric equations, Tangents and Area - 8.28

- 1 [T, $\S 11.1$, # 21] Find a parametrization for the line segment with endpoints (-1, -3) and (4, 1).
- 2 [T, §11.1, #31] Find a parametrization for the line segment joining points (0, 2) and (4, 0) using the angle u in the accompanying figure as the parameter.

3 [§10.1, #41] If a and b are fixed numbers, find parametric equations for the curve that consists of all possible positions of the point P in the figure, using the angle θ as the parameter. Then eliminate the parameter and identify the curve.

4 [$\S10.2$, Example 2] Recall the cycloid obtained by rolling a circle of radius r:

$$x = r(\theta - \sin \theta), \qquad y = r(1 - \cos \theta)$$

Find the slope of the tangent line in terms of θ . Where are the tangents horizontal and vertical?

- 5 Use the arc length formula for the following parametric equation : $x = 3\sin 3t, y = 3\cos 3t, 0 \le t \le 2\pi$.
- 6 Find the arc length of the curve $x(t) = e^t + e^{-t}, y(t) = 2t 5$ for $0 \le t \le 3$.

8 [§10.2, #69] The curvature at a point P of a curve is defined as $\kappa = |\frac{d\phi}{ds}|$ where ϕ is the angle of inclination of the tangent line at P, as shown in the figure. Thus the curvature is the absolute value of the rate of change of ϕ with respect to arc length. It can be regarded as a measure of the rate of change of direction of the curve at P and will be studied in greater detail in Chapter 13.

a) For a parametric curve x = x(t), y = y(t), derive the formula

$$\kappa = \frac{|\dot{x}\ddot{y} - \dot{y}\ddot{x}|}{(\dot{x}^2 + \dot{y}^2)^{3/2}},$$

where the dots indicate derivatives with respect to t. [Hint: Use $\phi = \arctan(dy/dx)$ to find $d\phi/dt$ and use chain rule to find $d\phi/ds$.]

b) By regarding a curve y = f(x) as the parametric curve x = x, y = f(x) with parameter x, show that the formula in part (a) becomes

$$\kappa = \frac{|d^2y/dx^2|}{(1 + (dy/dx)^2)^{\frac{3}{2}}}.$$

4 Polar coordinates - 8.30

1 Sketch the polar curve $r = \theta$. What is it in Cartesian coordinates $(x(\theta), y(\theta))$?

2 Sketch the polar curve $\theta = \pi/4$ and write its defining equation in x and y.

3 Sketch the polar curve $r = \sin 3\theta$.

4 [§10.3, #54] Match the polar curve equations with their corresponding pictures.

a)
$$r = \ln \theta$$
, $1 \le \theta \le 6\pi$;

b)
$$r = \theta^2$$
, $0 \le \theta \le 8\pi$;

c)
$$r = 2 + \cos 3\theta$$
.

5 [§10.4, #31] Find the area of the region that lies inside both curves $r = \sin 2\theta$ and $r = \cos 2\theta$.

6 [§10.4, #41] Find all points of intersection of the two curves $r_1 = \sin \theta$ and $r_2 = \sin 2\theta$.

7 [T, §11.5, #1] Find the area of the region bounded by $r = \theta$ for $0 \le \theta \le \pi$.

8 [T, §11.5, #5] Find the area of the region inside one leaf of the four-leaved rose $r = \cos 2\theta$.

- 9 [T, §11.5, #9] Find the areas of the regions shared by the circles $r=2\cos\theta$ and $r=2\sin\theta$.
- 10 [T, §11.5, #21] Find the lengths of the spiral $r = \theta^2, 0 \le \theta \le \sqrt{5}$.
- 11 [T, §11.5, #23] Find the lengths of the curve $r = 1 + \cos \theta$.
- 12 [T, §11.5, #25] Find the lengths of the parabolic segment $r = \frac{6}{1 + \cos \theta}$, $0 \le \theta \le \pi/2$.

5 Vectors, Dot product - 9.1

1 Draw $\overrightarrow{a} + \frac{1}{2}\overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$ given the vectors below.

- 2 Find a vector in the direction of $\langle -2, 4, 2 \rangle$ and of length 6.
- 3 If \overrightarrow{v} lies in the first quadrant and makes an angle of $\pi/3$ with the positive x-axis and $|\overrightarrow{v}| = 4$, find \overrightarrow{v} in component form.
- 4 Prove that the diagonals of a parallelogram intersect at their midpoints. ("Prove" just means explain why it's true.)
- 5 Consider the three points A(1,1,1), B(1,0,1) and C(1,0,0).
 - (1) Find \overrightarrow{AB} and \overrightarrow{AC} in components.
 - (2) Find the vector lengths $|\overrightarrow{AB}|$ and $|\overrightarrow{AC}|$.
 - (3) Find $\overrightarrow{AB} \cdot \overrightarrow{AC}$.
 - (4) Find the angle between these two vectors using the dot product.
 - (5) Verify your answer by plotting the points and drawing a picture.
- 6 Find the angle between a diagonal of a cube and a diagonal of one of its faces.
- 7 Find the scalar and vector projections of $\overrightarrow{b} = \langle 0, 1, \frac{1}{2} \rangle$ onto $\overrightarrow{a} = \langle 2, -1, 4 \rangle$.

6 Cross product - 9.6

- 1 [§12.4, #29] a) Find a nonzero vector orthogonal to the plane through the points P(1,0,1), Q(-2,1,3), R(4,2,5) and b) find the area of triangle PQR.
- 2 Prove the addition trig formulas for $\cos(\theta_2 \theta_1)$ and $\sin(\theta_2 \theta_1)$ using the dot product and cross product. (Start by taking unit vectors \overrightarrow{u} and \overrightarrow{v} at angles θ_1 and θ_2 .)
- 3 Find $\langle 6, 0, -2 \rangle \times \langle 0, 8, 0 \rangle$.
- 4 [T, §12.4, #1] Find $\overrightarrow{u} \times \overrightarrow{v}$ and $\overrightarrow{v} \times \overrightarrow{u}$ for $\overrightarrow{u} = 2\mathbf{i} 2\mathbf{j} \mathbf{k}$ and $\overrightarrow{v} = \mathbf{i} \mathbf{k}$.
- 5 Geometrically, why is $(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{a} = 0$ for all vectors \overrightarrow{a} , \overrightarrow{b} in \mathbb{R}^3 ?
- 6 Find two unit vectors orthogonal to both $\overrightarrow{a} = \langle 1, 2, 1 \rangle$ and $\overrightarrow{b} = \langle -3, 1, 0 \rangle$. What other vectors are orthogonal to both \overrightarrow{a} and \overrightarrow{b} ?
- 7 [T, §12.4, #35] Find the area of the parallelogram with vertices A(1,0), B(0,1), C(-1,0) and D(0,-1).
- 8 [T, §12.4, #37] Find the area of the parallelogram with vertices A(-1, 2), B(2, 0), C(7, 1) and D(4, 3).
- 9 Given P(1,2,3), Q(1,3,6), R(3,5,6) and S(1,4,2).
 - a) Find the area of the triangle with vertices P, Q and R.
 - b) Find \overrightarrow{PS} .
 - c) Find the volume of the parallelepiped spanned by \overrightarrow{PQ} , \overrightarrow{PR} , and \overrightarrow{PS} .

7 Lines and planes - 9.8

- 1 Find the parametric and symmetric equations for the line through the points $(0, \frac{1}{2}, 1)$ and (2, 1, -3).
- 2 Find the equation of a plane through the points (0,1,1), (1,0,1), and (1,1,0).

8 Lines and planes - 9.11

1 [T, §12.5, #13] Find a parametric form of the line joining the points

- 2 Find the equation of the plane through $P_0(2,4,5)$ perpendicular to the line x=5+t,y=1+3t,z=4t.
- 3 [T, §12.5, #33, #35] Find the distance from the point to the line:
 - a) (0,0,12), x = 4t, y = -2t, z = 2t;
 - b) (2,1,3), x = 2 + 2t, y = 1 + 6t, z = 3.
- 4 [T, §12.5, #39, #41] Find the distance from the point to the plane:
 - a) $(2, -3, 4), \quad x + 2y + 2z = 13;$
 - b) (0,1,1), 4y+3z=-12
- 5 Find the equation of the plane containing the following point and line: the point is (-1,2,1) and the line is given by the intersection of the planes x+y-z=2 and 2x-y+3z=1.
- 6 [T, §12.5, #29] Find the plane containing the intersecting lines

$$L1: x = -1 + t, \quad y = 2 + t, \quad z = 1 - t; \quad -\infty < t < \infty$$

 $L2: x = 1 - 4s, \quad y = 1 + 2s, \quad z = 2 - 2s; \quad -\infty < s < \infty$

7 [T, §12.5, #31] Find a plane through $P_0(2,1,-1)$ and perpendicular to the line of intersection of the planes 2x + y - z = 3, x + 2y + z = 2.

9 Vector functions, Space curves - 9.13

- 1 If $\overrightarrow{u}(t) = \langle \sin t, \cos t, t \rangle$ and $\overrightarrow{v}(t) = \langle t, \cos t, \sin t \rangle$, find $\frac{d(\overrightarrow{u} \cdot \overrightarrow{v})}{dt}$ and verify that it equals $\frac{d\overrightarrow{u}}{dt} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \frac{d\overrightarrow{v}}{dt}$.
- 2 Find the tangent vector $\overrightarrow{r}'(t)$ for the curve $\overrightarrow{r}(t) = \langle t^2, \cos 2t, -te^t \rangle$. Find the equation of the tangent line to the curve at t = 0.
- 3 Find the velocity, acceleration, and speed of a particle with the position function $\overrightarrow{r}(t) = e^t(\cos t \ \hat{\mathbf{i}} + \sin t \ \hat{\mathbf{j}} + t \ \hat{\mathbf{k}}).$
- 4 Find the velocity and position vectors of a particle that has acceleration $\vec{a}(t) = \hat{\mathbf{i}} + 2\hat{\mathbf{j}}$, $\vec{v}(0) = \hat{\mathbf{k}}, \vec{r}(0) = \hat{\mathbf{i}}$.
- 5 The position function of a spaceship is

$$\overrightarrow{r}(t) = (3+t) \hat{\mathbf{i}} + (2+\ln t) \hat{\mathbf{j}} + \left(7 - \frac{4}{t^2+1}\right) \hat{\mathbf{k}}$$

and the coordinates of a space station are (6,4,9). The captain wants the spaceship to coast into the space station. When should the engines be turned off?

6 [T, §13.2, #1] Evaluate the integral

$$\int_0^1 \left[t^3 \mathbf{i} + 7 \mathbf{j} + (t+1) \mathbf{k} \right] dt$$

7 [T, §13.1, #15] Let r(t) be the position of a particle in space at time t.

$$\mathbf{r}(t) = (3t+1)\mathbf{i} + \sqrt{3}t\mathbf{j} + t^2\mathbf{k}$$

Find the angle between the velocity and acceleration vectors at time t = 0.

10 Two variable functions, Tangent planes - 9.18

- 1 [T, §14.1, #5] Find the domain of $f(x,y) = \sqrt{y-x-2}$.
- 2 [T, §14.1, #9] Find the domain of $f(x, y) = \cos^{-1}(y x^2)$.
- $3 [T, \S 14.2, \# 13]$ Find the limits :

$$\lim_{\substack{(x,y)\to(1,1)\\x\neq y}} \frac{x^2 - 2xy + y^2}{x - y}$$

4 [T, §14.2, #15] Find the limit:

$$\lim_{\substack{(x,y) \to (1,1) \\ x \neq 1}} \frac{xy - y - 2x + 2}{x - 1}$$

5 [T, §14.3, #43] Calculate all the second derivatives of

$$g(x,y) = x2y + \cos y + y\sin x.$$

6 [T, $\S14.3$, #56] Calculate

$$\frac{\partial^5 f}{\partial x^2 \partial y^3}$$

with

$$f(x,y) = y^2 + y\left(\sin x - x^4\right).$$

7 [T, $\S14.6$, #1] Find the tangent plane to the surface

$$x^2 + y^2 + z^2 = 3$$
, $P_0(1, 1, 1)$.

8 [T, $\S14.6$, #5] Find the tangent plane to the surface

$$\cos \pi x - x^2 y + e^{xz} + yz = 4, \quad P_0(0, 1, 2).$$

9 [T, §14.6, #9] Find an equation for the plane that is tangent to the given surface at the given point. $z = \ln(x^2 + y^2)$, (1, 0, 0).

10 [T, §14.3, #72] Let
$$f(x,y) = \begin{cases} xy\frac{x^2-y^2}{x^2+y^2}, & \text{if } (x,y) \neq 0, \\ 0, & \text{if } (x,y) = 0. \end{cases}$$

- a) Show that $\frac{\partial f}{\partial y}(x,0) = x$ for all x, and $\frac{\partial f}{\partial x}(0,y) = -y$ for all y.
- b) Show that $\frac{\partial^2 f}{\partial y \partial x}(0,0) \neq \frac{\partial^2 f}{\partial x \partial y}(0,0)$.

${\rm GSI: Ning\ Tang}\, 11 \quad CONTINUITY\ OF\ FUNCTIONS,\ LIMITS,\ DIFFERENTIALS-9.20$

11 Continuity of functions, Limits, Differentials - 9.20

- 1 [T, §14.6, #25] Find the linearization L(x,y) of the function $f(x,y) = x^2 + y^2 + 1$ at each point :
 - (0,0),
 - (1, 1).
- 2 [T, §14.6, #57] A smooth curve is tangent to the surface at a point of intersection if its velocity vector is orthogonal to ∇f there. Show that the curve

$$\mathbf{r}(t) = \sqrt{t}\mathbf{i} + \sqrt{t}\mathbf{j} + (2t - 1)\mathbf{k}$$

is tangent to the surface $x^2 + y^2 - z = 1$ when t = 1.

- 3 [T, $\S14.2$, #31] Determine at which points, the functions are continuous :
 - $f(x,y) = \sin(x+y);$
 - $f(x,y) = \ln(x^2 + y^2)$
- 4 By considering different paths of approach, show that the functions have no limit as $(x,y) \to (0,0)$:
 - a) [T, §14.2, #41] $f(x,y) = -\frac{x}{\sqrt{x^2+y^2}}$;
 - b) [T, §14.2, #43] $f(x,y) = \frac{x^4 y^2}{x^4 + y^2}$.
- 5 Find an equation for and sketch the graph of the level curve of the function f(x, y) that passes through the given point.
 - (1) [T, §14.1, #49] $f(x,y) = 16 x^2 y^2$, $(2\sqrt{2}, \sqrt{2})$;
 - (2) [T, §14.1, #51] $f(x,y) = \sqrt{x+y^2-3}$, (3,-1).

GSI: Ning Tant2 CHAIN RULE, IMPLICIT DIFFERENTIATION, GRADIENTS - 9.28

12 Chain Rule, Implicit Differentiation, Gradients - 9.28

- 1 Find $\frac{dz}{dt}$ where $z = \sqrt{1 + x^2 + y^2}$ and $x = \ln t$, $y = \cos t$.
- 2 Let w = xy + yz + zx, $x = r\cos\theta$, $y = r\sin\theta$, $z = r\theta$. Use the Chain Rule to find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial \theta}$ at $(r, \theta) = (2, \pi/2)$.
- 3 Use implicit differentiation to find $\frac{dz}{dx}$ and $\frac{dz}{dy}$ where $e^z = xyz$.
- 4 [T, §14.4, #25] Assuming the equation $x^3 2y^2 + xy = 0$, use implicit differentiation to compute dy/dx at the point (1,1).
- 5 [T, §14.4, #29] Find the values of $\partial z/\partial x$ and $\partial z/\partial y$ at the points (1, 1, 1), where $z^3 xy + yz + y^3 2 = 0$.
- 6 [T, §14.4, #45] Laplace equations: Show that if w = f(u, v) satisfies the Laplace equation $f_{uu} + f_{vv} = 0$ and if $u = (x^2 y^2)/2$ and v = xy, then w satisfies the Laplace equation $w_{xx} + w_{yy} = 0$.
- 7 [T, §14.5, #7] Find ∇f at the given point :

$$f(x, y, z) = x^2 + y^2 - 2z^2 + z \ln x,$$
 (1, 1, 1).

8 [T, §14.5, #11] Find the derivative of the function at P_0 in the direction of ${\bf u}$:

$$f(x,y) = 2xy - 3y^2$$
, $P_0(5,5)$, $\mathbf{u} = 4\mathbf{i} + 3\mathbf{j}$

- 9 Find ∇f for $f(x,y,z) = x^2yz xyz^3$. Evaluate the gradient at the point P(2,-1,1). Find the rate of change of f at P in the direction of the vector $\overrightarrow{u} = \langle 0, 4/5, -3/5 \rangle$.
- 10 Show that $\nabla(uv) = u\nabla v + v\nabla u$ for u, v differentiable functions of x and y.
- 11 Suppose that over a certain region of space the electric potential is given by $V(x,y,z) = 5x^2 3xy + xyz$. Find the rate of change of the potential at P(3,4,5) in the direction of the vector $\overrightarrow{v} = \frac{1}{\sqrt{3}} \left(\hat{i} + \hat{j} \hat{k} \right)$.

13 Maxima and minima - 10.2

- 1 Find the local maximum and minimum values and saddle points of the following functions:
 - a) [T, §14.7, #1] $f(x,y) = x^2 + xy + y^2 + 3x 3y + 4$;
 - b) [T, §14.7, #23] $f(x,y) = y \sin x$;
 - c) [T, §14.7, #25] $f(x,y) = e^{x^2+y^2-4x}$;
 - d) [T, §14.7, #29] $f(x,y) = 2 \ln x + \ln y 4x y$.
- 2 [T, §14.7, #43] Find the maxima, minima, and saddle points of f(x,y), if any, given that
 - a) $f_x = 2x 4y$ and $f_y = 2y 4x$;
 - b) $f_x = 2x 2$ and $f_y = 2y 4$;
 - c) $f_x = 9x^2 9$ and $f_y = 2y + 4$.

Describe your reasoning in each case.

- 3 Find the shortest distance from the point (2,0,-3) to the plane x+y+z=1. (Hint: First, you want to find what we want to minimize: The distance d of a point (x,y,z) from the point P(2,0,-3) is given by $d^2=(x-2)^2+y^2+(z+3)^2$.)
- 4 [T, §14.7, #51] Find the point on the plane 3x + 2y + z = 6 that is nearest the origin.

14 Global max/min, Lagrange multipliers - 10.6

- 1 Find the absolute maximum and minimum values of $f(x,y) = 2x^3 + y^4$ on the domain $\{(x,y) \mid x^2 + y^2 \le 1\}$.
- 2 [T, §14.7, #31] Find the absolute maxima and minima of the functions on the given domains: $f(x,y) = 2x^2 4x + y^2 4y + 1$ on the closed triangular plate bounded by the lines x = 0, y = 2, y = 2x in the first quadrant.
- 3 [T, §14.8, #45] The condition $\nabla f = \lambda \nabla g$ is not sufficient: Although $\nabla f = \lambda \nabla g$ is a necessary condition for the occurrence of an extreme value of f(x,y) subject to the conditions g(x,y)=0 and $\nabla g \neq \mathbf{0}$, it does not in itself guarantee that one exists. As a case in point, try using the method of Lagrange multipliers to find a maximum value of f(x,y)=x+y subject to the constraint that xy=16. The method will identify the two points (4,4) and (-4,-4) as candidates for the location of extreme values. Yet the sum (x+y) has no maximum value on the hyperbola xy=16. The farther you go from the origin on this hyperbola in the first quadrant, the larger the sum f(x,y)=x+y becomes.

15 Iterated integrals, Double integrals - 10.9

1 [T, §15.1, #9] Evaluate

$$\int_0^{\ln 2} \int_1^{\ln 5} e^{2x+y} \, dy \, dx.$$

2 [T, $\S15.1$, #15] Evaluate the double integral over the given region R

$$\iint_{R} (6y^{2} - 2x) dA, \quad R: \quad 0 \le x \le 1, \quad 0 \le y \le 2$$

3 [T, §15.1, #33] Use Fubini's Theorem to evaluate

$$\int_0^2 \int_0^1 \frac{x}{1 + xy} \, dx \, dy.$$

- 4 Write an iterated integral for $\iint_R dA$ over the described region R using (a) vertical cross-sections, (b) horizontal cross-sections:
 - a) [T, §15.2, #9]

b) [T, §15.2, #11]

- c) [T, §15.2, #15] Bounded by $y = e^{-x}$, y = 1, and $x = \ln 3$.
- 5 [T, §15.2, #25] Evaluate the integral of f(x, y) = x/y over the region in the first quadrant bounded by the lines y = x, y = 2x, x = 1, and x = 2.
- 6 [T, §15.2, #27] Evaluate the integral of $f(u, v) = v \sqrt{u}$ over the triangular region cut from the first quadrant of the uv-plane by the line u + v = 1.
- 7 [T, $\S15.2,\,\#29]$ Sketch the region and evaluate

$$\int_{-2}^{0} \int_{v}^{-v} 2dpdv \quad \text{(the } pv\text{-plane)} .$$

16 More on double integrals - 10.11

1 [T, §15.2, #57] Find the volume of the region bounded above by the paraboloid $z = x^2 + y^2$ and below by the triangle enclosed by the lines y = x, x = 0, and x + y = 2 in the xy-plane.

2 [T, §15.2, #59] Find the volume of the solid whose base is the region in the xy plane that is bounded by the parabola $y = 4 - x^2$ and the line y = 3x, while the top of the solid is bounded by the plane z = x + 4.

3 [T, $\S15.2$, #78] Evaluate the integral

$$\int_0^2 (\tan^{-1} \pi x - \tan^{-1} x) \ dx$$

(Hint: Write the integrand as an integral and then use Fubini's theorem.)

4 Sketch the region bounded by the given lines and curves. Then express the region's area as an iterated double integral and evaluate the integral:

a) [T, §15.3, #1] The coordinate axes and the line x + y = 2.

b) [T, §15.3, #9] The lines y = x, y = x/3 and y = 2.

5 [T, $\S15.4$, #1, #3] Describe the given region in polar coordinates :

6 Change the Cartesian integral into an equivalent polar integral, then evaluate the polar integral :

a) [T, §15.4, #9]

$$\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} dy \, dx.$$

b) [T, §15.4, #19]

$$\int_{0}^{\ln 2} \int_{0}^{\sqrt{(\ln 2)^2 - y^2}} e^{\sqrt{x^2 + y^2}} dx dy.$$

7 [T, §15.4, #27] Find the area of the region cut from the first quadrant by the curve $r = 2(2 - \sin 2\theta)^{1/2}$.

GSI: Ning Tang

17 Change of variables, Jacobians - 10.16

- 1 [T, §15.8, #3]
 - a) Solve the system

$$u = 3x + 2y, \quad v = x + 4y$$

for x and y in terms of u and v. Then find the value of the Jacobian $\partial(x,y)/\partial(u,v)$.

- b) Find the image under the transformation u = 3x + 2y, v = x + 4y of the triangular region in the xy-plane bounded by the x-axis, the y-axis, and the line x + y = 1. Sketch the transformed region in the uv-plane.
- c) [T, §15.8, #7] Use the transformation to evaluate the integral

$$\iint_{R} \left(3x^2 + 14xy + 8y^2\right) dxdy$$

for the region R in the first quadrant bounded by the lines

$$y = -(3/2)x + 1$$
, $y = -(3/2)x + 3$, $y = -(1/4)x$, $y = -(1/4)x + 1$

- 2 [T, §15.8, #11] Polar moment of inertia of an elliptical plate: A thin plate of constant density covers the region bounded by the ellipse $x^2/a^2 + y^2/b^2 = 1, a > 0, b > 0$, in the xy-plane. Find the second moment of inertia of the plate about the origin. (Hint: Use the transformation $x = ar \cos \theta, y = br \sin \theta$. The formula is $I = \iint x^2 + y^2 dA$.)
- 3 Find the image of the set

S = triangular region with vertices (0,0), (1,1), (0,1) in the uv-plane

under the transformation $x = u^2, y = v$.

4 Use the change of variables $x = u^2 - v^2$, y = 2uv to evaluate the integral $\int \int_R y \ dA$ where R is the region bounded by the x-axis and the parabolas $y^2 = 4 - 4x$ and $y^2 = 4 + 4x$, $y \ge 0$. (Assume $u, v \ge 0$ so we have a one-to-one mapping.)

18 Triple Integrals - 10.18

- 1 [T, §15.5, #3] Write six different iterated triple integrals for the volume of the tetrahedron cut from the first octant by the plane 6x + 3y + 2z = 6. Evaluate one of the integrals.
- 2 [T, §15.5, #23] Find the volume of the region between the cylinder $z = y^2$ and the xy-plane that is bounded by the planes x = 0, x = 1, y = -1, y = 1.
- 3 [T, §15.5, Example 2] Set up the limits of integration for evaluating the triple integral of a function F(x, y, z) over the tetrahedron D with vertices (0, 0, 0), (1, 1, 0), (0, 1, 0), and (0, 1, 1). Use the order of integration dydzdx.
- 4 [T, §15.5, #5] Volume enclosed by paraboloids: Let D be the region bounded by the paraboloids $z = 8 x^2 y^2$ and $z = x^2 + y^2$. Write six different triple iterated integrals for the volume of D. Evaluate one of the integrals.

GSI : Ning Tang

19 More on triple integrals - 10.23

1 [T, §15.5, #21] Rewrite the integral

$$\int_{-1}^{1} \int_{x^2}^{1} \int_{0}^{1-y} dz dy dx$$

as an equivalent iterated integral in the order a. dydzdx b. dydxdz c. dxdydz d. dxdzdy e. dzdxdy.

2 [T, $\S15.8$, #20] Let D be the region in xyz-space defined by the inequalities

$$1 \le x \le 2, \quad 0 \le xy \le 2, \quad 0 \le z \le 1.$$

Evaluate

$$\iiint_D (x^2y + 3xyz) dxdydz$$

by applying the transformation

$$u = x$$
, $v = xy$, $w = 3z$

and integrating over an appropriate region G in uvw-space.

3 [T, §15.7, #13] Give the limits of integration for evaluating the integral

$$\iiint f(r,\theta,z)\,dz\,rdr\,d\theta$$

as an iterated integral over the region that is bounded below by the plane z = 0, on the side by the cylinder $r = \cos \theta$, and on top by the paraboloid $z = 3r^2$.

- 4 [T, §15.7, Example 2] Find the mass of the solid enclosed by the cylinder $x^2 + y^2 = 4$, bounded above by the paraboloid $z = x^2 + y^2$, and bounded below by the xy-plane.
- 5 Find $\int \int_E z dV$ where E is the region bounded by the paraboloid $z=4x^2+4y^2$ and the plane z=4.
- 6 Find the volume of the solid enclosed by the cylinder $x^2+y^2=9$ and the planes y+z=5 and z=1.
- 7 [T, §15.7, #33] Find the volume of the solid between the sphere $\rho = \cos \phi$ and the hemisphere $\rho = 2, z \ge 0$.

GSI: Ning Taking APPLICATIONS OF TRIPLE INTEGRALS, VECTOR FIELDS - 10.25 20 Applications of triple integrals, Vector fields - 10.25

- 1 [T, §15.7, #67] A solid of constant density is bounded below by the plane z = 0, above by the cone $z = r, r \ge 0$, and on the sides by the cylinder r = 1. Find the z-coordinate center of mass.
- 2 Find the volume of the solid that lies above the cone $\varphi = \pi/3$ and below the sphere $\rho = 4\cos\varphi$.
- 3 [T, §15.7, #69] Suppose the solid bounded below by the xy-plane, on the sides by the sphere $\rho=2$, and above by the cone $\varphi=\pi/3$ has constant density 1. Find the z-coordinate center of mass of the solid by computation. Find the x,y-coordinate center of mass by symmetry.
- 4 Find the mass and set up the x-coordinate of the center of mass of the solid E with constant density function $\rho = 2$, where E lies under the plane 1 + x + y and above the region in the xy-plane bounded by the curves $y = \sqrt{x}$, y = 0 and x = 1.
- 5 Which of the following vector fields are conservative:
 - [T, §16.3, #1] $\mathbf{F} = yz\mathbf{i} + xz\mathbf{j} + xy\mathbf{k}$;
 - [T, §16.3, #3] $\mathbf{F} = y\mathbf{i} + (x+z)\mathbf{j} y\mathbf{k}$;
 - [T, §16.3, #5] $\mathbf{F} = (z+y)\mathbf{i} + z\mathbf{j} + (y+x)\mathbf{k}$.

21 Vector fields, Line integrals - 10.30

1 [T, §16.3, #9] Verify the following vector fields F are conservative and find the corresponding f such that $F = \nabla f$:

•
$$\mathbf{F} = e^{y+2z}(\mathbf{i} + x\mathbf{j} + 2x\mathbf{k}).$$

- 2 [T, §16.1, #9] Evaluate $\int_C (x+y)ds$ where C is the straight-line segment x=t,y=(1-t),z=0, from (0,1,0) to (1,0,0).
- 3 [T, §16.1, #15] Integrate $f(x, y, z) = x + \sqrt{y} z^2$ over the path C from (0, 0, 0) to (1, 1, 1) given by $C = C_1 \cup C_2$, where

$$C_1: \mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j}, \quad 0 \le t \le 1$$

 $C_2: \mathbf{r}(t) = \mathbf{i} + \mathbf{j} + t\mathbf{k}, \quad 0 \le t \le 1$

4 Find the line integrals of \mathbf{F} :

- [T, §16.2, #7] $\mathbf{F} = 3y\mathbf{i} + 2x\mathbf{j} + 4z\mathbf{k}$,
- [T, §16.2, #10] $\mathbf{F} = xy\mathbf{i} + yz\mathbf{j} + xz\mathbf{k}$

from (0,0,0) to (1,1,1) over each of the following paths in the accompanying figure :

- a) the straight-line path $C_1 : \mathbf{r}(t) = t\mathbf{i} + t\mathbf{j} + t\mathbf{k}, \quad 0 \le t \le 1;$
- b) the curved path $C_2 : \mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + t^4\mathbf{k}, \quad 0 \le t \le 1;$
- c) the path $C_3 \cup C_4$ consisting of the line segment from (0,0,0) to (1,1,0) followed by the segment from (1,1,0) to (1,1,1).

5 A counterexample to the criterion of conservative vector fields without the simply connected assumptions : verify

$$F(x,y) = \left(-\frac{y}{(x^2 + y^2)}, \frac{x}{(x^2 + y^2)}\right), \quad (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$$

satisfies the condition $P_y = Q_x$ criterion. In fact, we will see later using line integrals and Green's theorem that this is not a conservative vector field.

CSI: FNUNDAMENTAL THEOREM OF LINE INTEGRALS, GREEN'S THEOREM - 11.1

Fundamental Theorem of line integrals, Green's theorem - 11.1

1 [T, §16.3, #19] Evaluate

$$\int_{(1,1,1)}^{(1,2,3)} 3x^2 dx + \frac{z^2}{y} dy + 2z \ln y dz$$

using the fundamental theorem of line integrals.

2 [T, §16.3, #21] Evaluate

$$\int_{(1,1,1)}^{(2,2,2)} \frac{1}{y} dx + \left(\frac{1}{z} - \frac{x}{y^2}\right) dy - \frac{y}{z^2} dz$$

using the fundamental theorem of line integrals.

3 [T, §16.4, #1] Verify Green's theorem for the field

$$\mathbf{F} = -y\mathbf{i} + x\mathbf{j}$$

with the domains of integration to be the disk $R: x^2 + y^2 \le a^2$ and its bounding circle $C: \mathbf{r} = (a\cos t)\mathbf{i} + (a\sin t)\mathbf{j}, \ 0 \le t \le 2\pi.$

4 [T, §16.4, #21] Evaluate

$$\oint_C \left(y^2 dx + x^2 dy \right)$$

using Green's theorem, where C is the triangle bounded by x=0, x+y=1, y=0.

5 [T, §16.4, #23] Evaluate

$$\oint_C (6y+x)dx + (y+2x)dy$$

using Green's theorem, where C is the circle $(x-2)^2 + (y-3)^2 = 4$.

GSI : Ning Tang 23 CURL AND DIVERGENCE, PARAMETRIC SURFACES - 11.13

23 Curl and divergence, Parametric surfaces - 11.13

- 1 Find the curl of $\overrightarrow{F}(x,y) = \sin(xy)\hat{i} + \cos(xy)\hat{j}$.
- 2 Find the curl of $\overrightarrow{F}(x, y, z) = xy \hat{i} + x^2 z \hat{j} (y + z^3) \hat{k}$.
- 3 [$\S16.5$, #29] Verify the identity :

$$\operatorname{curl} (\operatorname{curl} F) = \operatorname{grad} (\operatorname{div} F) - \nabla^2 F.$$

- 4 Find a parametrization of the surfaces:
 - a) [T, §16.5, #1] The paraboloid : $z = x^2 + y^2$, $z \le 4$;
 - b) [T, §16.5, #5] Spherical cap : The cap cut from the sphere $x^2 + y^2 + z^2 = 9$ by the cone $z = \sqrt{x^2 + y^2}$;
 - c) [T, §16.5, #13] Tilted plane inside cylinder : The portion of the plane x+y+z=1 inside the cylinder $x^2+y^2=9$;

24 Surface area, Surface integrals - 11.15

- 1 Set up the integral for finding the area of the part of the surface $y = 4x + z^2$ that lies between the planes x = 0, x = 1, z = 0, z = 1.
- 2 Set up the integral for the surface area of the part of the cone $z = \sqrt{x^2 + y^2}$ that lies between the plane y = x and the cylinder $y = x^2$.
- 3 Evaluate the surface integral $\int \int_S y \ dS$ where S is the part of the paraboloid $y = x^2 + z^2$ that lies inside the cylinder $x^2 + z^2 = 4$.
- 4 Evaluate the flux of $\overrightarrow{F}(x,y,z) = xze^y \hat{\mathbf{i}} xze^y \hat{\mathbf{j}} + z \hat{\mathbf{k}}$ across the surface S consisting of the part of the plane x+y+z=1 in the first octant and with downward orientation (meaning $\hat{\mathbf{n}}$ has negative z component).
- 5 Find the flux of $\overrightarrow{F} = y \hat{\mathbf{i}} + (z y) \hat{\mathbf{j}} + x \hat{\mathbf{k}}$ across the surface S which is the tetrahedron with vertices (0,0,0), (1,0,0), (0,1,0) and (0,0,1). Take S to have outward orientation.

25 Stokes Theorem - 11.27

- 1 Let S be the portion of the paraboloid $z=4-x^2-y^2$ above the plane z=0, with upward normal. Let $\vec{F}=\langle y-z,-(x+z),x+y\rangle$. Compute $\iint_S \operatorname{curl} \vec{F}\cdot d\vec{S}$.
- 2 Find $\iint_S \operatorname{curl} \vec{F} \cdot d\vec{S}$ where $\vec{F} = (xyz)\hat{\mathbf{i}} + (xy)\hat{\mathbf{j}} + (x^2yz)\hat{\mathbf{k}}$ and S consists of the top and 4 sides (no bottom) of the cube with vertices $(\pm 1, \pm 1, \pm 1)$ oriented outward.
- 3 Let C be the triangle in \mathbb{R}^3 with vertices (1,0,0),(0,2,0) and (0,0,1). Compute

$$\int_C (x^2 + y) dx + yzdy + (x - z^2) dz.$$

4 Use Stokes' Theorem to evaluate $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F}(x,y,z) = x^2z\hat{\mathbf{i}} + xy^2\hat{\mathbf{j}} + z^2\hat{\mathbf{k}}$ and C is the curve of intersection of the plane x+y+z=1 and the cylinder $x^2+y^2=9$ oriented counterclockwise as viewed from above.

GSI: Ning Tang

26 Divergence Theorem - 11.29

- 1 Use the Divergence theorem to find the flux of $\overrightarrow{F} = (e^z + y^2 x) \hat{\mathbf{i}} + (\cos x + x^2 z) \hat{\mathbf{k}}$ through the surface S bounded by the cone $z^2 = x^2 + y^2$ and the plane z = 1.
- 2 Use the Divergence theorem to calculate the flux of $\overrightarrow{F} = |\overrightarrow{r}| |\overrightarrow{r}|$ through the surface S given by the hemisphere $z = \sqrt{1 x^2 y^2}$ and the disk $x^2 + y^2 \le 1$ in the xy-plane. (Here \overrightarrow{r} denotes the radial vector $\langle x, y, z \rangle$).
- 3 Use the divergence theorem to evaluate the flux integral $\int \int_S \overrightarrow{F} \cdot d\overrightarrow{S}$ where $\overrightarrow{F} = \langle yz, x^2 + y, z^2 \rangle$ and S is the part of the paraboloid $z = x^2 + y^2$ that lies inside the cylinder $x^2 + y^2 = 4$. (Note S is not closed so you have to make it closed and subtract out the flux integral over the surface you added in.)
- 4 Use the divergence theorem to find the flux of $\overrightarrow{F} = y \ \hat{\mathbf{i}} + (z-y) \ \hat{\mathbf{j}} + x \ \hat{\mathbf{k}}$ across the surface S which is the tetrahedron with vertices (0,0,0), (1,0,0), (0,1,0) and (0,0,1). Take S to have outward orientation.

GSI: Ning Tang 27 SOLUTIONS TO SELECTED TRIPLE INTEGRAL PROBLEMS

27 Solutions to selected triple integral problems

1 [T, §15.5, #3] Write six different iterated triple integrals for the volume of the tetrahedron cut from the first octant by the plane 6x + 3y + 2z = 6. Evaluate one of the integrals.

Solution:

$$\int_0^1 \int_0^{2-2x} \int_0^{3-3x-3y/2} dz dy dx, \quad \int_0^2 \int_0^{1-y/2} \int_0^{3-3x-3y/2} dz dx dy,$$

$$\int_0^1 \int_0^{3-3x} \int_0^{2-2x-2z/3} dy dz dx, \quad \int_0^3 \int_0^{1-z/3} \int_0^{2-2x-2z/3} dy dx dz,$$

$$\int_0^2 \int_0^{3-3y/2} \int_0^{1-y/2-z/3} dx dz dy, \quad \int_0^3 \int_0^{2-2z/3} \int_0^{1-y/2-z/3} dx dy dz.$$

The value of all six integrals is 1.

2 [T, §15.5, #23] Find the volume of the region between the cylinder $z=y^2$ and the xy-plane that is bounded by the planes x=0, x=1, y=-1, y=1.

Solution: We compute

$$\int_0^1 \int_{-1}^1 \int_0^{y^2} 1 \, dz \, dy \, dx = \int_{-1}^1 y^2 \, dy = \frac{2}{3}.$$

3 [T, §15.5, Example 2] Set up the limits of integration for evaluating the triple integral of a function F(x, y, z) over the tetrahedron D with vertices (0, 0, 0), (1, 1, 0), (0, 1, 0), and (0, 1, 1). Use the order of integration dydzdx.

Solution: We sketch D along with its "shadow" R in the xz-plane. The upper (right-hand) bounding surface of D lies in the plane y=1. The lower (left-hand) bounding surface lies in the plane y=x+z. The upper boundary of R is the line z=1-x. The lower boundary is the line z=0.

GSI: Ning Tang 27 SOLUTIONS TO SELECTED TRIPLE INTEGRAL PROBLEMS

First we find the y-limits of integration. The line through a typical point (x, z) in R parallel to the y-axis enters D at y = x + z and leaves at y = 1.

Next we find the z-limits of integration. The line L through (x, z) parallel to the z-axis enters R at z = 0 and leaves at z = 1 - x.

Finally we find the x-limits of integration. As L sweeps across R, the value of x varies from x = 0 to x = 1. The integral is

$$\int_{0}^{1} \int_{0}^{1-x} \int_{x+z}^{1} F(x,y,z) dy dz dx.$$

4 [T, §15.5, #5] Volume enclosed by paraboloids: Let D be the region bounded by the paraboloids $z = 8 - x^2 - y^2$ and $z = x^2 + y^2$. Write six different triple iterated integrals for the volume of D. Evaluate one of the integrals.

Solution:

$$\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{x^{2}+y^{2}}^{8-x^{2}-y^{2}} 1 dz dx dy, \int_{-2}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} \int_{x^{2}+y^{2}}^{8-x^{2}-y^{2}} 1 dz dx dy$$

$$\int_{-2}^{2} \int_{4}^{8-y^{2}} \int_{-\sqrt{8-z-y^{2}}}^{\sqrt{8-z-y^{2}}} 1 dx dz dy + \int_{-2}^{2} \int_{y^{2}}^{4} \int_{-\sqrt{z-y^{2}}}^{\sqrt{z-y^{2}}} 1 dx dz dy$$

$$\int_{4}^{8} \int_{-\sqrt{8-z}}^{\sqrt{8-z}} \int_{-\sqrt{8-z-y^{2}}}^{\sqrt{8-z-y^{2}}} 1 dx dy dz + \int_{0}^{4} \int_{-\sqrt{z}}^{\sqrt{z}} \int_{-\sqrt{z-y^{2}}}^{\sqrt{z-y^{2}}} 1 dx dy dz$$

$$\int_{-2}^{2} \int_{4}^{8-x^{2}} \int_{-\sqrt{8-z-x^{2}}}^{\sqrt{8-z-x^{2}}} 1 dy dz dx + \int_{-2}^{2} \int_{x^{2}}^{4} \int_{-\sqrt{z-x^{2}}}^{\sqrt{z-x^{2}}} 1 dy dz dx$$

$$\int_{4}^{8} \int_{-\sqrt{8-z}}^{\sqrt{8-z}} \int_{-\sqrt{8-z-x^{2}}}^{\sqrt{8-z-x^{2}}} 1 dy dx dz + \int_{0}^{4} \int_{-\sqrt{z}}^{\sqrt{z}} \int_{-\sqrt{z-x^{2}}}^{\sqrt{z-x^{2}}} 1 dy dx dz$$

The value of all six integrals is 16π .

5 [T, §15.7, Example 2] Find the mass of the solid enclosed by the cylinder $x^2 + y^2 = 4$, bounded above by the paraboloid $z = x^2 + y^2$, and bounded below by the xy-plane.

Solution: We sketch the solid, bounded above by the paraboloid $z=r^2$ and below by the plane z=0. Its base R is the disk $0 \le r \le 2$ in the xy-plane.

The value of M is

$$M = \int_0^{2\pi} \int_0^2 \int_0^{r^2} dz r dr d\theta = \int_0^{2\pi} \int_0^2 [z]_0^{r^2} r dr d\theta$$
$$= \int_0^{2\pi} \int_0^2 r^3 dr d\theta = \int_0^{2\pi} \left[\frac{r^4}{4} \right]_0^2 d\theta = \int_0^{2\pi} 4 d\theta = 8\pi.$$

GSI: Ning Tang 27 SOLUTIONS TO SELECTED TRIPLE INTEGRAL PROBLEMS

6 [T, §15.7, #13] Give the limits of integration for evaluating the integral

$$\iiint f(r,\theta,z)\,dz\,rdr\,d\theta$$

as an iterated integral over the region that is bounded below by the plane z = 0, on the side by the cylinder $r = \cos \theta$, and on top by the paraboloid $z = 3r^2$.

Solution:

$$\int_{-\pi/2}^{\pi/2} \int_{0}^{\cos \theta} \int_{0}^{3r^2} f(r,\theta,z) dz r dr d\theta$$

7 Find $\int \int_E z \, dV$ where E is the region bounded by the paraboloid $z = 4x^2 + 4y^2$ and the plane z = 4.

Solution: We compute

$$\iiint_E z \, dV = \int_0^{2\pi} \int_0^1 \int_{4r^2}^4 z \, dz r \, dr \, d\theta = \frac{16\pi}{3}.$$

8 Find the volume of the solid enclosed by the cylinder $x^2+y^2=9$ and the planes y+z=5 and z=1.

Solution: We compute

$$\int_0^{2\pi} \int_0^3 \int_1^{5-r\sin\theta} 1 \, dz r \, dr \, d\theta = \int_0^{2\pi} \int_0^3 (4-r\sin\theta) r \, dr \, d\theta = 36\pi$$

9 [T, §15.7, #67] A solid of constant density is bounded below by the plane z = 0, above by the cone $z = r, r \ge 0$, and on the sides by the cylinder r = 1. Find the z-coordinate center of mass.

Solution: First, we compute the mass:

$$M = \int_0^{2\pi} \int_0^1 \int_0^r dz \, r \, dr \, d\theta = 2\pi \int_0^1 r^2 \, dr = \frac{2\pi}{3}$$

and then we write

$$\bar{z} = \frac{1}{M} \iiint z \, dV = \frac{1}{M} \int_0^{2\pi} \int_0^1 \int_0^r z \, dz \, r \, dr \, d\theta = \frac{1}{M} \pi \int_0^1 r^3 \, dr = \frac{3}{8}.$$

10 Find the volume of the solid that lies above the cone $\varphi = \pi/3$ and below the sphere $\rho = 4\cos\varphi$.

Solution: We compute

$$V = \iiint 1 \, dV = \int_0^{2\pi} \int_0^{\pi/3} \int_0^{4\cos\varphi} \rho^2 \sin\varphi \, d\rho \, d\varphi \, d\theta = \int_0^{2\pi} \int_0^{\pi/3} \frac{64}{3} \cos^3\varphi \sin\varphi \, d\varphi \, d\theta$$
$$= \frac{128\pi}{3} \int_0^{\pi/3} \cos^3\varphi \sin\varphi \, d\varphi = -\frac{32\pi}{3} \cos^4\varphi \Big|_0^{\pi/3} = -\frac{32\pi}{3} (1/16 - 1) = 10\pi.$$

GSI : Ning Tang 27 SOLUTIONS TO SELECTED TRIPLE INTEGRAL PROBLEMS

11 [T, §15.7, #69] Suppose the solid bounded below by the xy-plane, on the sides by the sphere $\rho=2$, and above by the cone $\varphi=\pi/3$ has constant density 1. Find the z-coordinate center of mass of the solid by computation. Find the x,y-coordinate center of mass by symmetry.

Solution: We compute the mass

$$M = \int_0^{2\pi} \int_{\pi/3}^{\pi} \int_0^2 \rho^2 \sin\varphi \, d\rho \, d\varphi \, d\theta = \frac{16\pi}{3} \int_{\pi/3}^{\pi} \sin\varphi \, d\varphi = 8\pi.$$

Then we compute

$$\bar{z} = \frac{1}{M} \int_0^{2\pi} \int_{\pi/3}^{\pi} \int_0^2 \rho \cos \varphi \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta = \frac{8\pi}{M} \int_{\pi/3}^{\pi} \cos \varphi \sin \varphi \, d\varphi = \frac{1}{4} \int_{2\pi/3}^{2\pi} \sin \varphi \, d\varphi = \frac{3}{8}.$$

By symmetry, $\bar{x} = \bar{y} = 0$.

12 Find the mass and set up the x-coordinate of the center of mass of the solid E with constant density function $\rho = 2$, where E lies under the plane 1 + x + y and above the region in the xy-plane bounded by the curves $y = \sqrt{x}$, y = 0 and x = 1.

Solution: The mass is given by

$$m = \int_0^1 \int_0^{\sqrt{x}} \int_0^{1+x+y} 2 \, dz \, dy \, dx = 2 \int_0^1 (1+x) \sqrt{x} + \frac{1}{2} x \, dx = 2 \left(\frac{2}{3} x^{3/2} + \frac{2}{5} x^{5/2} + \frac{1}{4} x^2 \right) \Big|_0^1 = \frac{79}{30}.$$

The center of mass is given by

$$\overline{x} = \frac{1}{m} \int_0^1 \int_0^{\sqrt{x}} \int_0^{1+x+y} 2x \, dz \, dy \, dx.$$

$\begin{array}{cc} {\rm GSI:Ning\ Tang} \\ {\color{red}{\bf 28}} & {\color{red}{\bf Acknowledgements}} \end{array}$

In this note, the problems are mainly cited from our textbook and the book *Thomas' Calculus: Multivariable, 14th edition.* For these kinds of problems, we cite the question number so that you can locate it if you want. Note that, Thomas' book contains the solutions to odd numbered exercises.