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Sobolev spaces in domains ( R")
Date: January 17, 2023

1.1 Recap of Sobolev spaces in R"

For any s 2 R, kukyse = khDi®uk_». The general form of Sobolev embeddings what we

ask for is
WKP Wi k> j; q p;
which is equivalent to
Wk ip La:

Morally speaking, you trade derivatives for integrability. Obviously, we need some restriction
relation between exponents as follows.

Forp g pX wehaveWkP L9 wherep X is given by a scaling lawx 7! x which is
asked by the Gagliardo-Norenberg-Sobolev inequality

ku k|_q . ku ka?P:

Explicitly, % k = % with q= p ¥, where the left hand side is the scaling index.

If % k < 0, then fors> 0 satisfying% k= {- s, we have the Morrey's inequality

Wk;p CS;

wheres is a non-integer andCs is the Holder space. Ifs is an integer, thenw*P  Cs &
forany 2 [0;1). For Holder spacesC! Lip C for 2 (0;1).

1.2 Sobolev spaces in domains

Before, we only discuss Sobolev spacesRh and we now extend it to domains inR". For
any open set R", @is the boundary of .

The simplest case is that is half space, a more complicated one is fractal boundaries.
The most common set-up is that the boundary is locally a graph.

De nition 1.1. We say@is C* fork 1 if @is a nite union of C* graphs.

De nition 1.2.  We de ne WKP() as a space of functions satisfyingu 2 L?() and @u 2
LPforallj j k.

Note that a priori, u2 D () implies @u 2 D ().
Another natural de nition for Sobolev spaces in is

De nition 1.3.  We sayu 2 WKP() if there exists u2 WP(R") such thatu = uin .

It turns out that these two de nitions are equivalent. Supposeu 2 WXP(R"), then it is
obvious thatk@uk.r() Kk @ukierny and hence the second de nition implies the rst one.
For the other implication, it is equivalent to the following question \Givenu 2 WXP(), can
we nd an extensionu 2 WXP(R™)?"

First, we consider the simplest case when is the half spade.
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1.2.1 How to extend CK(H) functions to CK(R") - motivation of trace inequality

For u 2 LP(H), we make a trivial re ection to extend it to R" by de ning

u(x); x2 H;

u(x) = u(x); x2H:

If u2 COH), then this extension gives a functionu 2 C°(R"). However, this extension
does not mapCi(H) to C(R"). The strategy to invent a nice extension is that we can do
a unbalanced re ection

X =(x%%,) 7! (X% kxp) = X :

Moreover, an a ne combination for di erent k's would not a ect the mapping property
Co(H)! C°R"). We de ne

ux); x,>0

u(x) =
x) qu(x® xn)+ GuU(XS 2X,); Xn < O:

In order to match u and @Qu at x, =0, we needc; + c,=1and ¢ 2c, =1, respectively.
More generally, we can nd an extensioru 2 CK(R") by extending C¥(H) with an a ne
combination of k coe cients, which is solvable since the coe cients is corresponded to a
Vandermonde matrix 0 1
1 1 1
@ : : - A
(1 (2 ( k)

In order to make an extension ofW*P functions, we need to match at least the rstk 1
derivatives so that they do not have any jumps at the boundary in the sense that when we
di erentiate any derivative of order k 1, it does not produce delta functions or other
exotic distributions so that its derivative no longer belongs td_P. For now, this idea is just
heuristic, but we will see this is rigorous if we can make sense of the trace operator.

1.2.2 Trace inequality will suce to show the equivalence of de nitions of
WP ()
We want to know whether the trace ofW P functions (restriction on the boundary) is

well-de ned. For any u 2 WKP(R"), we nd a Cauchy sequenca” 2 WKP\D . We can
de ne ujgn=Ilim u"jgxin LP if we can prove the following trace inequality

kUkLp(@H k Ukwk;p (H)-

If this trace inequality holds, then we make a claim that ifu 2 Wk?p(l—t), v 2 WKP(R" nH)

, . u(x); x2H; .
and Tu = Tv, whereT is the trace operator, then the functionw* := (x) IS
v(x); x2H
combined to be a function inW*P(R"). The reason why this is true is that we can prove
that the divergence theorem holds for functions i 2 WP(H) and 2 C! () since we

can prove this by approximatingu by smooth functions. Then we can justifyw 2 W*P(R")



(
_ @u(x); x2H; . o . .
by showing thatw' := ’ " is the weak derivative (by pairing with D(R"
y g Av(x): x2H (by pairing (R™)
of w by using divergence theorem itd and R" nH for u;v, respectively.
Therefore, to prove the equivalence of the two de nitions ofV%P() for Sobolev spaces

in domains in R", it su ces to show the trace inequality holds.

1.3 Trace inequality
1.3.1 A revisit of a simple L2 case of trace inequality

We start with a revisit of a homework problem from last semester's course. For an hyper-
planeV R", we proved

kukfz(v) . kuk2(rn K@ Wy 2(rn)y;

for all u 2 D. This holds for allu 2 H*(R") after noticing that we can use this inequality
to extend the de nition for trace from D to H!. This problem is quite simple since it is just
a one dimensional problem. Note that@u? = 2uu,, wherex is the normal direction of the
hyperplaneV. This implies

UZ(O) =2 UUy 2kUk|_2(Rn)k@ kLZ(R”);
x< 0
which completes the proof. This problem is just an introduction to the trace inequality we
would like to prove for now.

1.3.2 Nonsharp LP case by introducing a cuto (breaking the scaling)
The simplest trace inequality we want to prove is

kUkLp(@}-p k Ukwl;p(H)Z

The same strategy 7
0
u(x30)= @u(x5xn) dxq
1
does not work anymore since the integrand is not integrable unleps= 1. A trick is to
replace@u by @(u ) with = (x,) 2 C! such that 1 nearx, =0.
We compute
Z 0 Z 0
u(x%0)= (O)u(x%0) = U(x% x,) dx, + @, u(x% X,) dxp:
1 1
By triangle inequality in LP and Minkowski inequality,
Z
0 0
KT UkLr(@n ] 0(xn)jku( s Xn)Kepery dXn + j 1 k@Qu(;xn)kee dx,
1 1
Kk (kLpokukLgano + K K pok@ukp e ;

x0’

where we use the support property and Holder's inequality in the last step. Therefore,
kTUkLp(@H C]_kUkLp(H) + Czk@kLp(H):



4 TRANSCRIBED BY NING TANG  INSTRUCTOR: PROFESSOR DANIEL TATARU

This inequality is obviously weaker than the one we obtain compared to the one in our
homework. The reason is that we introduce an arti cial scaling by introducing the xed .

1.3.3 A better way to use the cuto - introducing parameters to be optimized
at the end

To make ¢;; ¢, two moving targets, we replace by (x ,) with a scaling parameter .

Then 7 -
0 -0 -0 _
C = P ( X n) an =C 1=p . = ¢C 1=p~ — C 1—p:

By minimizing the right hand side, we get
KTukes . k@ kuk'y:
Recall that for p = 1, we do not need to introduce to make the integrand integrable.

Hence, we can deriv&Tuk, : k @ :, which is the sharp case in the scaling sense.
Note that kuk 1 (@y k uk_: (4 fails but it holds for continuous functions

kUkc(@w k Ukc(H):
1.3.4 LP results optimal in the sense of scaling

It is easy to observe that
T:whPio oLP
is not optimal unlessp = 1 in the sense of scaling. From a scaling perspective, the optimal
s for
T:WSP(RM) ! LP(@HB
would bes = 1=psince@H= R" %, and % s= % givess = 1=p. However, it does not
hold for s = 1=p but fortunately, it almost holds and the correct statements are

T:WEPFSP 1 WsSP: 8s>



Additional topics of Sobolev spaces
Date: January 19, 2023

2.1 A universal way to do extension

Last time, we noticed that the trace operator doe not work foLP functions, but we proved
that

T:WKP(H)! Wk P(@B:
In the proof, we need to match the rstk derivatives on the boundary. As a result, it is
enough to take a simple symmetry

ux); xp,>0
u(x® x,); X, <0

u(x) =

to extend WLP functions. On the other hand, to extendWkP, we take

(X); Xxn>0

for L k. In order to get a systematic/uniformu, we change it to

BX); x>0

u(x) =
9 jLzlcju(xﬂ, iXn); Xnp <O

with ; 2 (1;2) and by taking the limit and viewing it as sort of the Riemann sum, we de ne

(X); Xn>0

u(x) = o Ju(x® x,)d; x,.<0;

wherec( ) satis es 7 7
o )d =1; o )’'d =0;8

If ¢ 2 D, then b is analytic at 0 and the relation tells usb(0) = 1;@b(0) = i¥, which
implies the convergence db but it might not be Schwartz. However, we only requirec has
su cient decay at in nity so that we can interchange the di erentiation and the integral.
And this would not be a problem since we can simply chooseas a function which satis es
the required properties at 0 and compactly supported.

2.2 Extension operator if the boundary is not at

In the setting of = fx, >f (x9g, we make a simple argument to atten the boundary
by considering
(x%xa) 7 (x%2); z=xn f(X9;
which maps to H. With a slight abuse of notation, we usex for x° y for x,. In order to
compute

@u(x;z) = @ (u(x;y  f(x));
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we need to requirdf 2 CX (i.e. @ 2 CK) to make the extension forW P, However, we do
not need all this boundary regularity.

Theorem 2.1 (Stein's extension theorem) Suppose@ is Lipschitz. Then there exists a
universal extension operator, that is, for anjk 2 Z, 1 p < 1, there exists a bounded
extension operatorE : WXP() 1 WHKP(R"). If is bounded, therEu has compact support.

We only sketch the proof for Stein's extension theorem. Our starting point is also
KOGY): y >f (x);
c( Juxy+C (f(x) y)d:

However, we run into the same problem by di erentiating using the chain rule. The idea is
to changef (x) vy into d((x;y); @) and regularize it in a little ball around ( x;y).

u(x;y) =

2.3 WEP() - Approximation by  D()

Recall that one can approximate any function inW*P(R") by functions D(R") when
1 p< 1. Nowwe care aboutwhetherthis would be true for domains iR". Unfortunately,
the closure ofD() in WKP() is not WKP() provided k 1. One way to see this is that
for u 2 WKP(), we have T@u 2 LP,j j Kk 1. Supposeu = lim u, with u, 2 D().
Then we need to require@u =0on @for j j k 1 sinceu, vanishes near@.

De nition 2.2.
WEP .= closure of D() in  WP:

Proposition 2.3. When @ is C¥, u2 WkP() isin WSP() ifand only if @u=0 in @
forj j k 1

For the proposition above, we proved one direction and the proof of the converse direction
can be found on [7]. As a corollary of the proposition above, we have the following
Proposition 2.4.  u2 W&P() if and only if its extension by0 is in WXP(R").
2.4 Homogeneous Sobolev spaces and Poincae inequality

In order to have a better scaling property, we introduced

WKP(RM = fu2D% @u2LP;j j= kg

with Kukyy«, = i =k k@uk.». Sincek k,«, = 0 holds for any polynomial of order k 1,

we need to consider the quotient spad&kP=P , ; with the same norm to make it a Banach
space.

To rectify this, we take the closure ofD(R") in WP, Thanks to G-N-S inequality, we
havekuki s K ukye wit %: % k provided% k> 0.

Proposition 2.5. This closure is a Banach space provide%j k>0(p<yp).

When % k < 0, then this approximation strategy does not eliminate all polynomials, but
it reduces some. So we cannot use this strategy to de ne the homogeneous space. Instead,
we can take the quotient space as a de nition. One can also use the completionDofas
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a de nition, which bene ts the computations for nice functions. However, when we de ne
it, we need to say ifu, ! uin HS, then u is not in S % Instead, u is de ned module
polynomials. In other words, we arti cially make these with the same idea.

For negative exponents, we exped H?* for s< 0. Thus,

. d
HS:=fu2S°jj%()2L?g; 5<s<0

where the requirements > g is to makeD  HS sincej jS2 L2..
note that this space is not a quotient space.

For any bounded domain

WP():= fu2LP;@w® LPg; W'™P():= fu2D’ @ LPg
and henceW P is a quotient space modulo constants. Sina@wonly determinesu modulo

constants,kuk, » kr ukg, is obviously false. How should we modify this to make it true?
One way to modify this is to subtract the average to eliminate the constants.

Moreover, one should

2.4.1 Proof by using an estimate obtained as a byproduct of Morrey's inequality
Theorem 2.6 (Poincae inequalityé. For u2 WP,

ku - u(x)dxkee kr ukge:
Proof. In the proof of I\%orrey's inequality, we came up with an estimate

: . jr u(y)j
- ju(x) uly)idy i 1
Br (x) B XYMt
for any ball B centered atx. Recall that we also use this inequality to prove the endpoint
Sobolev embeddingv" BMO. R
First, we prove this for the case where are balls. Setig := - ; u(y) dy. Then
Z : .
. . . . ir u(y)j
u(x) Us, - - u(x) u(y)jd ————dy:
jux)  ug, v Br(x>J (X) u(y)jdy o X YT
Note that we can also prove this inequality for anyz 2 B,(x) instead of only the center of
B, (x), namely x. We connectz with each point on @Band consider each laye§(t) = t@B
if we do a translation su%h thatz = 0 when proving

ir u(y)i
gix yn it
where the constant depends on dia. Note that originally, the layers S(t) is just concentric
balls with di erent radius, this time it becomes eclipse whert 6 1. However, we can still
estimate ju(y) u(0)j by integrating over the line we draw fory 2 S(r) = rS(1). (Note
that the distance from z to each point on the boundary is not the same now, but we still
can estimate the distance by diamB, so the same idea of proof still applies.) Therefore, by
taking the L norm on both sides of

- BJ'U(X) u(y)jdy. s

r u(y)j

juiz) usj.
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the result follows from the Young's convolution inequality.
Note that the same strategy can be applied to any convex domain with smooth boundary.

2.4.2 Proof by contradiction and size of the constant

One can refer to [7] for another proof by contradiction. This contradiction method can be
applied to many estimates of this kind. Note that this requires the use of Rellich-Kondrachov
compactness theorem, which we will discuss next lecture.

However, our preceding proof directly shows that the constant is of size diam . For the
sake of determining the size of the constant directly from the inequality itself, we still need
the scaling argument. Since we have

ku (x) (u) kiey  C() krukeey; ku(x) u kpecy C( ) kroukpe( )

foru = u(x ), one can expand the rst one to see thatC ()= C( ), which means that
the constant is of size diam .

2.4.3 Other Poincae-type inequalities

Other ways to x our constants are as follows. We may ask \I&uki sy  Kkr ukpe() if
u(xo) = 0?" By Morrey's inequality, WP  C° provided p > n, so our question will be
meaningful and the answer is yes provided > n. For simplicity, we assumex 2 can
connect with xq using a simple linex = xo+ tw with w2 S" 1. Take w = (0;X,5X,j) as an
example. We write by Cauchy-Schwarz inequality that

- . Z yl - - p Z yl - .
ju(x)j® j@, u(x’ xn)j dxn j@, u(x’ xn)jP dxn
Yo Yo
and then integration both sides along«®direction, which implies kuk pry .  KDUKp(R),
whereR IS a rectangle containing Xo with sides parallel to axes. We can altew to get

in nitely many R,,, covering the support ofu (if assumingu 2 D), then by choosing a nite
sub-covering, we complete the proof. This is roughly the main idea of the proof.

Moreover, for bounded, kuk »(y kr ukis(, also holds foru2 WyP(), 81 p 1
The proof can be found at [7, Chapter 5.6.1], which is basically an easy application of G-N-S
inequality, extension theorem and the fact that." () Ls()if r>s.

One can also expect a Poincae-type lemma for higher derivatives.

2.5 Compact Sobolev embeddings

De nition 2.7.  Given two Banach space;Y such that X Y, thatis, forany u2 X,
kuky k uky. The embeddingX Y is compact X Y) if any bounded sequence iX
has a compact subsequence .

Note that X X if and only if X is nite dimensional.



2.5.1 Nonexistence of compact Sobolev embeddings in R" - translations

We would like to know when the Sobolev embedding&/*P L9 is compact. Unfortu-
nately, there are no compact Sobolev embeddings for Sobolev spaceR"inOur rst enemy
is the translations. Setu,(x) := u(x + n) for someu 2 D  WKP(R"). Sinceu, ! 0in
DO if u, converges to some in LY then v = 0. Also, kvk_ s = lim ku,k_« = kuk_4, which
implies that such a compact Sobolev embedding does not exist.
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Compact Sobolev embeddings (Continued)
Date: January 24, 2023

For homogeneous spaces, the embedding&® L9 only works for% k = % g=pk,

wherep « is called the sharp exponent. For inhomogeneous spaces, the embeddifg®
L9works forallp q p* since we naturally havew ?  LP,

We would like to know when the embeddingVk?P L9 is compact and look for enemies
to compactness, coming from symmetries.

3.1 Non-examples of compact embeddings
3.1.1 Nonexistence of compact Sobolev embeddings in R" - scalings

Last time we discussed the rst kind of enemies - translations and reached the conclusion
that no compact Sobolev embedding exists IR". Now we discuss the second type of enemies
- scalings. We start with the homogeneous case. For2 WP, we deneu (x) = u(Xx)
and we would like to nd such thatku Ky, = Kuky,«e . It turns out that = % k. Note

that is positive so if we let , ! 0, then the graph ofu" := u , squashes. Note that
Ku"Ky e = Kukyyie;  Ku"kpa = Kukya

On the other hand,u™ ! 0 uniformly if we chooseu 2 D, so no compact Sobolev embedding
exists if we can spread the graph out. In other words, we again show that no compact
Sobolev embedding exists iiRR".

3.1.2 Sharp Sobolev embeddings not compact - scalings as well

Another attemptistolet !1 and then the graph squeezes. It is easy to see! 0
uniformly everywhere away from 0. Supposa" ! tin L9, we also knowu" ! w in D°
On the other hand, the uniformly convergence afi" tells us suppt~ f Og providedu 2 D.
However,u-2 L9, then we knowu-= 0, which implies ku"k_q ! 0, which is a contradiction.

To draw the conclusion here, the sharp homogeneous Sobolev embeddings are not compact
even in bounded domains.

Now we consider the sharp inhomogeneous case. Instead of considering\if& norm,
we also consider thé-P norm. It turns out that

ku nkLP = nkkUkLp 10

as n!1 . However,ku k ¢ = kuk_q still holds, which is a contradiction. So the sharp
(in)homogeneous Sobolev embeddings are not compact even in bounded domains. This
strategy can also help us to show that the sharp Morrey's embeddings are not compact.

3.2 Rellich-Kondrachov compactness theorem

Theorem 3.1 (Rellich - Kondrachov). Inhomogeneous non-sharp Sobolev embeddings in a
bounded domain are compact.

Proof. We only prove for the G-N-S case and one can nd references for Morrey's case.
Step 1: Supposeu" 2 WKP ku"kywe 1. We want a convergent subsequence rf
forp g <pkx. We knowfu"gis bounded inL?*. To nd a subsequence, we try to use
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the Arzela-Ascoli, which says that iff u"g is equi-bounded and equi-continuous, then there
exists a uniform convergent subsequence.

Step 2: Extension to R"

First, we replaceu” by extensions, still denoted byu", such that ku"ky,«, is still bounded
and suppu" 2 B for a xed large ball B. This saves us from worrying about the boundaries.

Step 3: u"! v.in L! by passing to a subsequence (Arzela-Ascoli)
R Second, to apply Arzela-Ascoli, we need to regularize the functions. For ' 2 D,

" =1, we denote' - =" " (x="). Setu ;== u" .

Then we compute

kulke: K u'keek' -k p0 . "9 dkuMkyp;

which is uniformly bounded inn. Similarly,
k@Ok.: K Uk ok@' K po. "% 9 Tkukyp;

which impliesfu?gt_, is equi-continuous. Therefore, by Arzela-Ascoli theorem, there exists
a uniformly convergent subsequence bti"gl_, suchthatu? ! v.inL! or more speci cally,
CO. In particular, it converges inL9 since the domain is bounded.

Step 4: u’! u" in LY (uniformly in  n) by interpolation

For the convergenceu” ! u", we have nonuniform convergence ikV*P. To look for
uniform convergence, we need to look &t9. Forp g <p ¥, since

ku?  u"kee k u? Ukl ku! u”kip“k;

it is enough to show thatu? u"! 0in L! uniformly in n sinceku® u"k_, « is uniformly
bounded. (This is there we use the fact thay 6 p X.) \ZNe compute

u'(x) u'(x)= (u'(y) u'(x))'-(x y)dy= (u"(x+"z) u(x))'(2)dz
Z Z
= 1@[1|(x+ h"z) "zdh' () dz;
0

where supp B. Then
Z

ku! Uk " j@G(x + h"z)jjzjdh' (z)dzdx. "k@0k.: "k@Uk,,! O
B O

uniformly. Therefore, ku? u"k .« = O(") uniformly in n.

Step 5. A diagonal argument to extract a subsequence for u" to converge in LA

For any > 0, we choos€ small enough such thatku  u"kjq for all n thanks to
Step 4. Then it su ces to show that for this xed ", we can extract a subsequenag'- such
that it converges inL".

This is already done in Step 3. That means, there exist$ such that 8j;k > N , ku"
uMeky q we have

ku"  u™k e k ul o ouM™kie+ kut o uMkee+ ku™ o ukie 2 + kul uke 3

Moreover, one should notice that the subsequence now depends on 'thee choose. So
we need to employ a diagonal argument to conclude. To be precise, for 2 ¥, we need to
ensure that the subsequence fdr= 2 K is a subsequence of the one we chose'fer2 &k 1,
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Then we just need to extract the things in the diagonal (corresponding to and n) and this
completes the proof.

Remark 3.2 In particular, WP() LP() forall 1 < p < 1 thanks to the theorem
above.



13

Elliptic Equations

Date: January 26, 2023

P
For a di erential operatgr P(D) = c D with constant coe cients, D; = il@, its
symbol is given byP( )= ¢ and we haveP( )b = o,

4.1 Ellipticity of a di erential operator P

A naive de nition of ellipticity is that P( ) has no real zeros.

If we consider the Fourier transformb( ), then those 's in a bounded set correspond
to the smooth component of our functions because the inverse Fourier transform of lah
function with compact support is analytic thanks to the Paley-Wiener theorem. On the
other hand, the behavior of ! 1 tells us the singularities ofu. So one should give priority
to the singularities of the symbolu to make it have better behavior.

This motivates a better de nition for ellipticity : We say P is elliptic if P( ) does not
have real zeroes for large.

Furthermore, when is large, the highest order terms dominate if?( ), so we de ne the
principal symbol as follows :

De nition 4.1.  For a symbol of orderm, P( ) = ,, ;¢ , its principal symbol is
de ned as X
Pm( )= c ;
jj=m

where the subscriptm is just for principal symbol not denoting the order.

A even better de nition for ellipticity is as follows and this would be our primary notion
of ellipticity.
De nition 4.2. We sayP is elliptic if P,( ) 6 0 for 6 0. Equivalently,
iPm()i g j™ (4.1)
for some constantc.

P
Remark 4.3, The criterion (4.1) also works for variable coe cientsP,(X; )=  cn(X)

When the orderm = 1, you will notice that there is no choice for a real symbol to be
elliptic unless in 1 dimension. If we focus on 2 dimensions, the operator

@ Q+i@
with complex principal symbol takes a fundamental role in complex analysis. The idea to
consider in 2 dimensions is that the real part and imaginary part of the operator vanish on a
codimension 1 set, respectively, so the operator vanishes on a codimension 2 set. We require
this codimension 2 set to be the origin, so we consider 2 dimensional case.

If m =2, we are allowed to have real-valued polynomials in higher dimensions which do
not vanish anywhere except the origin. Our)r(nain object is

— 2.
= DX
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Solving @u= f is equivalent to solve the Laplace equation u = (@ I@)f. To study
holomorphic functions @ u= 0), it su ces to study harmonic functions (real part/ imaginary
part of holomorphic functions).

This observation also helps us to know a bunch of harmonic polynomials by considering
Rez* for any k.

There are also elliptic operators of second order with complex symbols, which is not of so
much interest since some theories for real symbols may not apply to complex ones.

For m = 3, the polynomial is odd and if you look for real symbols, then you end up
with some restrictions on dimension. When dimensiod 3, one need to consider complex
symbols again.

For m = 4, an important real operator is the bilaplacian 2, which comes from the plate
equation.

Henceforth, we consider second order elliptic equations with real principal symbols. One
example is the Laplacian equatiol® =  and the variable coe cient analogue is

X
P= al (x) @@
ijj =1
If a is constant, we can assumeg{ ) is symmetric and hence it can be diagonalized, so it
su ces to consider  for all constant coe cients operator. However, when a; (x) are not
constants, we can only diagonalize it at one point, so the second case is of great interest.
Moreover, we can put lower order terms without a ecting the principal symbol,

P=d @@+0@+c
For nonlinear elliptic equations, we may consider semilinear equations
u=f(u); u=f(ur u;

and quasilinear equations )

a' (uy@u = f (u;r u)
and fully nonlinear equations

F(u;Du;D?u)=0:
4.2 L2 theory of the Laplace equation

We start from the inhomogeneous Laplace equation
u=f

to study the existence and uniqueness and continuous dependence in the nonlinear term.
4.2.1 Reuvisit of fundamental solutions of Laplacian equation

Let us recall what we know for a Laplace equation from last semester. The fundamental
solution in dimension 2 iK (x) = Zi Injxj and K (X) = cyjxj? ¢in dimensiond 3. Suppose
u=f
in R", thenu = K f is asolution. If supgd is compact, thenu makes sense as a distribution
even iff is merely a distribution in E°sinceK 2 L, D °ford 3. Obviously, this is

loc



15

not the unigue solution in distributions. Suppose -~u = f, then 2(\1 t#) = 0. Hence,

(h t) = ¢ () with a nite sum. Therefore, u uis a polynomial. In other words,
the solution is unique modulo polynomials. More precisely, it is unique up to harmonic
polynomials.

Now let's start with the L? theory for the Laplace equations.
4.2.2 Existence of u2 H?2 such that u=f 2 L2 for dimension d> 4
Forf 2 L% we study u= f. By taking the Fourier transform, we get
j o=

If d> 4, then 5, 2 L{ and hence

1
b= —Zfb
)
is well-de ned and thereforeu is in H2. An intuition for the reason why we get the dimension
restriction is thatfor0 s< % H=® consists of functions instead of pure distributions. This

can be seen from the fact thaf (15 ) = c9xj¢ S2 L'+ L2 whens 2 [0;d=2).
4.2.3 Cutting o low frequencies to discuss lower dimensions

Now we discuss lower dimensions.

1
b= —1b
jJ?
also works iffd vanishes near 0. For arbitraryf , we cut o the low frequencies by
RO)=0 4.
Then we can solve u- = f. and nd a solution u- 2 H?(R") by de ning b := #1’0 In

fact, u- 2 H?(R") sincek(1+j j?)b-( )k.2 (1 +" ?)kfk_2, so we can apply the Poincae
inequality in the following discussion.

4.2.4 Arguments for dimension d=4 in detail

Let us keep things simple rst and we discuss in dimension 4. We want to look for a
compact subsequence. Sind¢! L% we haveH? W BMO. This already tells
us that when we look at the sequenca-, we would like to de ne a convergence modulo
constants. In general, it does not have convergent subsequence even € ug+ ¢ for some
xed ug with a blow-up constantc.. Therefore, to de ne a convergence, we should take away
this constant rst.

We want to choosec: such thatu- ¢ converges. Set- := u-jg. By Poincae's inequality
with p =4, we get

ku- ugkiag) K ukyis kK uky, = kfk2 k fkpa:
and hence in particular,u-  u-g is uniformly bounded inL?(B). Moreover, u- U-g iS
uniformly bounded in H?(B). Therefore, by the compactness theorem, there exists some

u2 L?suchthatfu. u.gg! uinL?B) by passing to a subsequence. (Now we consider
this for Bg of any radiusR.) Furthermore, the convergence also holds i°sinceD is dense
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in L2. Moreover, sincefu-  u-g.g is uniformly bounded in H?(BR), it implies a weak-
convergence tou in H?(Bgr) by the Banach-Alaoglu theorem. (This is a problem in last
semester's HW.) Therefore, we know 2 H?(Bg). So as we can see, we reached a stronger
conclusion than we expected.

425 Sketch for dimension d=2 or 3

In dimension 3, we haved! L®andH? \WZY® which still allows us to apply Poincae's
inequality and use the same argument to conclude.

However, when we come to 2 dimensionsl! BMO, which do not allow us to have
Poincae's inequality anymore. We should modify the normalizatioru- u-g, so that we
also eliminate the contribution of rst order polynomials since we lose control of rst order
derivatives as well.

Another generalization is that forf 2 H 1, we can reach the conclusion that 2 H.?!.
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Local properties of solutions to Laplace equation
Date: January 31, 2023

Last time, we studied u=f 2 L? and provedf 2 HS would imply u 2 H5*? for s <
(This requirement make sure thatﬁib( ) de nes a tempered distribution.)

n
2

5.1 A continuation from last time - LP theory of Laplace equation
Theorem 5.1. |If u=1f 2 LPforsomeu2 S ° thenu2 W?P for 1<p< 1.

Proof. Though there is no Plancherel theorem fqu 6 2, but we still can use Fourier transform

to proceed. Since Cu = j j?b = £ and @@u = b, it suces to show the symbol
m()=F ' 5 mapsLPto LP. Obviously, m( )2 L*,som(): L2! L2 To prove it
LP! LP, we examine the Hormander-Mikhlin condition

j@em()j cijj b
which is a su cient condition for m: LP! LP,1<p< 1. Notethat m( )= —ﬁ where

I
Dj

each factor is called the Riesz transform; := 5.

Remark 5.2 Remember thatp = 1;1 are disallowed, u = f 2 L! does not imply
u 2 C1, The idea from Daniel is that this can be seen from the fundamental solutions and
you need to choose some nide such that K f is an integration with some cancellation
when varying between positive part and negative part. You only need to do the estimate
instead of computing the integral explicitly.

Note that u(x;y) = (x?> y?)In(x?>+ y?) in R? satises u= 8§§+§§ 2 LY while

3x*+6x%y?  yt
(x2 + y?)?

is unbounded. So it means thatt 2 W2 with u 2 L! . From a discussion with Ryan, the
idea behind is as follows. We would like to nd inR? to cgnstruct a counterexample. And
Injxj 2 BMO but not bounded, so if we want@@u =In = x? + y?; then by integrating in
polar coordinates, we geti = 1(x*+ y?)In(x? + y?), which is still bad. However, everything
works well if we change the plus sign to a minus sign.

In [8, Section 2.2], the authors introduceu(x;y) = (x2 y?)InjIn(x2+ y?)j as an example
such that u is continuous butu 2 CY1. Moreover, u(x;y) = Inin ﬁ is given as an
example for u2 L. with @u 2L

loc loc*

@u =2In(x?+ y?) +2

5.2 Local properties - Elliptic regularity
We talk about elliptic regularity rst. If a solution is given, we ask how regular it is.

5.2.1 Starting with u2 L2 (or HS.,,s<0)and f 2 L. gives u2 H?2

loc’ loc loc

Suppose
u2 L2,

loc*

u=f f 2L

2 .
loc?
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Replaceu 2 L2, by v = u, 2 D such that 1 nearxo. Of course,v 2 L2 An
application of Lebniz rule gives

v= (u)= u u 2rur = f u 2r ru;

where the rst two terms are in L? and the last term isinH . Hence, v=g2H .
Moreover,v v=g; 2 H 1. By doing a Fourier transform, we get

1
b= —_— .
& 7 5 7
Hence,v 2 H!. In other words,u 2 HL. and we get an increase by one for the order of
legitimate derivatives.
If we do the argument again, then we will end up withg2 L2, g, 2 L2 andv 2 H?. This
proves the following theorem.

thenu 2 HZ

loc*

Theorem 5.3 (Elliptic regularity) . For u=f,u2L2_,f 2 L2

loc loc’

Corollary 5.4. The theorem also works if we start wittu 2 HS. andf 2 L2, with s < 0.

Proof. We just iterate the same proof and note thatu 2 HS_ impliesg 2 HS  and then

v 2 H%"! as long ass < 2. By performing an iteration, we can also conclude the same result
as above.

5.2.2 Startingwith u2D%and f 2 H?

loc

(resp. C!) gives u2 H? (resp. C')

C

Now we try to make another extension. First, we consider the following problem. Suppose
u 2 DY can we conclude thatu 2 H;2. for somesy? This is a subtle question. The answer
iS no since

ot I+ %+ Wy
will be an enemy. However,u 2 H for somes, since for any distributionu 2 D we can
write u 2 E%in the form of X
u = @g
ik

for someg 2 C° and an integerk which depends onu . This is the so-called structure
theorem for compactly supported distributions, which can be found in [10, Corollary 5.4.1].
So, u 2 H% for somes, sinceg 2 L2 but keep in mind that we cannot conclude that
u 2 H%. The reason whyu 2 H?. is that for dierent cut-o functions , we will get
a di erent exponent s,. This can be easily read from the counterexample above. (This
argument above has nothing to do with the Laplacian so far.)

Finally, the discussion above tells us we can extend the elliptic regularity theorem to :

Theorem 5.5. Supposeu 2 D%andf 2 HS_ with u=f,thenu2 H?,

I%c loc
Proof. For any 2 D, we consideru 2 H* and do the argument as in the proof of the
basic version of elliptic regularity. This leads us tou 2 HS*2. By choosing dierent , we

nally conclude u 2 H>2.

Corollary 5.6. Suppose u=f withf 2 C!, then we haveu2 C! .
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Proof. This follows from the Sobolev embedding theorem and the generalized elliptic regu-
larity theorem above.

In particular, for any harmonic function u in D, we knowu 2 E(D). Here the notation
v 2 E(D) means thatv 2 C! (D) and v can have any kind of growth near the boundar@D

5.2.3 Harmonic functions are analytic
Theorem 5.7. If u is harmonic, thenu is analytic.

Proof. We use the fundamental solutions to prove thati is analytic in B provided that u is
harmonic in 2B.

Step 1 : Localiztion

Choose 2 D such that 1in B and 0in (2B)°. Setv= u. For v=1_f =

u 2r ur ,we have supp 2 (2B)nB. From the preceding corollary, we know 2 D .

Step 2 : Show v= K f (Nontrivial!)

The second step is to show that we can solve this using the fundamental solution. We
claimv = K f. Note that the solution is not unique, so this claim is not trivial. Since
f 2D andK 2 Li, except for dimension 2, s f 2 E. (For dimension 2, one can use
complex analysis to prove the theorem directly. So we can assume without loss of generality
that n 3.

Moreover, the criterion for a smooth functions to be a tempered distribution is that the
function has at most polynomial growth near in nity. (This is trivial to check by de nition.)
For jxj su ciently large and for y 2 supgf, jx yj is away from O so everything is nice and
it follows directly that

z 1
X Y SE(y)dy  15xj;  d(x;suppf) 1
thanks to the fact that f is compactly supported.

Hence,v = K f on grounds the unigueness of smooth solutions with decay At. This
uniqueness is easy to see sinke f 2S%v2D,then (K f v)=0implieskK f v
are polynomials. Moreover, since f v)(x)! Oasx!1l ,weknowv=K f.

Step 3 : Prove analyticity by noting that K is analytiggaway from 0

Since forx 2 B, whenjx yj > 0, K is analytic, sov(x) = ;o f(Y)K(x y)dyisan
integral of a family of functions which is analytic inx and hence the integral is analytic.

Remark 5.8. We comparePo= , P, =1 and P = 1 to see the e ectof lower
order terms.

Global solvability :
{ Po : use homogeneous Sobolev spaces;
{ P+ : use inhomegeneous Sobolev spaces;
{ P : no more naive solvability, but it can be studied using more advanced theory
called Sommerfeld radiation condition.
Elliptic regularity : Nothing changes.
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5.3 Local properties - Weak maximum principle for u 0 (subharmonic)

Now we study the solution to the Laplacian equation to see how big it is pointwisely.
Suppose R" and u=0in . It follows from the discussion above that u2 C?! ().
We need to make a stronger assumption to initiate the discussion.

Supposeu 2 C(), we look at the maximum points for u. Setx, to be a local maximum
for u. Thenr u(xg) = 0. Since u(x) = u(Xg) + r u(xp)(x Xg) + %r 2u(xo)(X  Xo) (X
Xo) + 0(jX  Xoj3), we knowr 2u(xe) 0. Thus u(xg) =trr 2u(xe) O.

Now if we change the hypothesis to u < 0, then we know that there is no maximum
points inside and max u = maxg u. However, we can prove the same result by only
assuming u 0.

Theorem 5.9 (Weak Maximum Principle). Supposeu 2 C() and u 0in a compact
domain , thenmax u=maxg Uu.

Proof. Setu- := u+ "j_ij, and then u- < 0. Sincejxj? is bounded in a compact domain,
u- ! u uniformly in . By passing to the limit in u-, we know max u = maxg u. More
precisely, we consider

maxu maxu- =maxu- maxu+ " maxjxj?
@ @ @

and let" ! O.
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Strong maximum principle, mean value property
Date: February 2, 2023

We sayu 2 C() such that u 0 is a subharmonic functions. By replacingi by
u, an easy corollary for superharmonic functions ( u 0), we have min-u = min g u.
Later, we discuss why we need to be bounded.

6.1 Weak maximum principle for general second order elliptic operator
6.1.1 Variable coe cients with c=0
The same proof of the maximum principle applied for variable coe cient problems

al (x)@@u+ b@u O

where the real matrix @' (x)) is symmetric and positive de nite. At a maximum point,

Hess(u)(xo) = 1 2u(Xo) 0, which impliesa’ (xo) @@u(xo) 0, since it is the trace of the
product of a positive de nite matrix (a! ) and a semi-negative de nite matrixr u, which is
semi-negative de nite. One can see this from diagonalizin@() using an orthogonal matrix
and hence we know the sum is non-positive.

6.1.2 Only non-negative maximum taken into account when c O
If one want to apply the same method for

al @@u+b@u+cu O

where we need extra conditions that 0 and we only consider positive maximum so that
the last term is positive at our maximum.

6.2 Mean value property for implies strong maximum principle in any com-
pact domain

Now we discuss the strong maximum principle. Given a connected compact domain .
Suppose u 0 and max-u=maxg U, the maximum can be achieved inside if and only
if it is constant.

The proof needs the mean value property.

6.2.1 Mean value property for harmonic or subharmonic functions
Suppose u =0, then

Z Z
u(Xop) = - udx; u(Xop) = - udx:
B (Xo:r) @BXxosr)
For subharmonic functions, we have
Z Z
u(xe) - udx; u(Xe) - u dx:

B (Xo;r) @BXxo;r)
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We prove the case for subharmonic functions by applying Green's theorem. Set =
B(O;r)= B. The (Zsreen's theorengives

Z
@u @v
= + = = d:
] u vdx Bu( V) dx @B@v u@d.
To prove the mean value property, we need a good choice forSo we need
V= o
v 0inB,

Vies= 0, we don't want the appearance of%\/ in the boundary terms.
Set
v(x) = K(jxj)  K(r);  K(x)= cjxj®? "
and then 2K (jxj) = c(n;r). We write

Z
u(0) = uv+c ud:
B @B
By settingu 1, we knowc = j@B and henzce
u©) - ud:

@B
By a linear change of coordinates, you can prove the mean value property ér@@ in some
eclipse since the linear change of a ball is a eclipse.

6.2.2 Strong maximum principle for in compact domains
Now we prove the strong maximum principle. SeM = max—u = maxg U. Suppose
u(Xp) = max u. We choosea such that B(xo;r2 . By applying mean value property,
M =u(Xe) - udx M:

B
This implies that u M in B(Xo;r). Then
D=fx2 : ux)= Mg
is open and closed. By connectedned3,= , thatis, u M in .

6.3 Harmonic functions in unbounded domains : Liouville's theorem, general
type maximum principle

6.3.1 Two dierent proofs for Liouville's theorem

For harmonic functions, u =0 implies @u = 0. Hence, we can also apply the mean

value property to derivatives asZ ~

1
@u(Xxo) = - @Qudx = — judx:
B (xo:r) 1B] @HXo;r)

We use this fact to prove the Liouville's theorem.

Theorem 6.1. Any bounded harmonic function inR" is constant.
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Proof. Supposguj M and we write

. . 1 . Mn
J@@Xo)] iB] joB p
asr!l
Alternative proof : Alternative proof is to use the distribution theory that we discussed

before. Since bounded functions are tempered distributions, we can apply Fourier transform
and conclude thatu is a polynomial. Then it is constant.

6.3.2 A brief discussion on maximum principles in unbounded domains

What happens to the maximum principle if the domain is not compact. We consider a
simplest unbounded domain - half space rst. FixH = fx, 0g. Then u(x) = x, does not
satisfy

maxu maxu:
H @H
At least you need to impose some decay condition. One can refer to [3, Theorem 2.7, Theorem
2.9] for a di erent kind of maximum principle involving unbounded domains.

A second example is an angle and you can change it by using= z . For the stripe
in two dimensions, we refer to the Phragnmen{Lindelf theorem in complex analysis for the
condition such that the maximum principle holds in a strip.

6.4 Comparison principle

One can view the maximum principle as a comparison of (super, sub) solutions with
constant functions. Note that the reason why we care about the constant functions is that
they are solutions.

Corollary 6.2 (Comparison principle) Suppose u 0 and v 0Ifu von@,
thenu vin
Proof. Notethat ( u v) 0, we know

max(u V) m@ax(u v) O

In fact, the comparison principle also holds for

d @@+ @+ c;
wherec 0. We just need to modify the proof with the weak maximum principle for this
general second order elliptic operator today. Note that this is in line with the di erent
behavior of operatorsP = +1and P = 1 we discussed in last lecture.
Such comparison principle can be also extended to lots of other equations.
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Elliptic boundary value problem 1 - Adjoint method, Lax-Milgram

Date: February 7, 2023

Let R", we discuss u = f in . The Dirichlet boundary condition is u = 0 on
boundary and the Neumann boundary condition i%“: 0, which means that you cut o all
the heat transmissions through the boundary.

7.1 Dirichlet boundary condition - uniqueness theory
If instead we look at (
u=fin ;
u=gon@:

If one can extendg to the interior of the region to obtain av in such that vjg = g. Then,
by letting u = v+ w, we get

(7.1)

w=f+ vin ;
w=00n @:
A good topic to discuss is the existence and uniqueness. There are two ways to develop the

uniqueness theory. The rst one is based oh? estimates. The other one is based on the
maximum principle.

7.1.1 Uniqueness for - Performing an estimate by the source term
Supposeu solveg (7.1) withf = %: 0, then we_compute
0= ( wudx= jr uj?dx u @udx = jr uj?dx;
e @

which impliesr u = 0. Sinceujg =0, we knowu 0. Note that this argument works for
Neumann boundary condition as well.

To make this computation rigorous, one needs u 2 L2. Sinceujp = 0, we require
u 2 H(). Then one could regularize u by u- 2 D (), which satises u-! uin H}. If we

redo the computation, we end U£ with 5

jir wjfdx= f.u-dx;

which implies
kr u-k?, k fok 2ku-k 2:
The it follows from Poincae's inequality that
kr uk 2 k fok2:

However, we can achieve a better result than this one. In the Cauchy Schwartz above, instead
of usingL? for both, we do
kr u-k?z Kk foky tkuekyg;
which implies
kr u-k 2 k foky 1: (7.2)
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Thus we end up with a smaller norm on the right hand side. Note that : Hg! H 1, so
here we get the right space.

Sinceu- ! uin Hg, we knowf. ! f in H ! and hence we can pass to the limit in (7.2),
which proves the uniqueness. When we become familiar with these, one usually omits the
justi cation by smooth functions. We summarize as the following proposition.

Proposition 7.1. If u2 H}() , u=f 2H ), then
kUkHé() k ka 1() .
In particular, the estimates of the solution by the source term implies uniqueness.

7.1.2 Uniqueness for - Applying maximum principle

Another way to prove uniqueness is to use maximum principle. Supposesatis es (7.1)
with f = g =0. By maximum principle, max u=maxg u = 0. If we consider u instead
of u, by minimum principle, we get min u = 0. Hence,u = 0. This argument works if
u2 C().

If u satises (7.1) with g = 0. Supposef 2 L' with jfj M. We penalizeu by
V= u+ gﬂ—njx Xoj?,then v 0, thatis, vis sub-harmonic. Sincer maxg v MR?=2n
provided B (xo; R). Then we get

maxu k fk_ : R?%:

Compared to theL?-based estimates we obtained above, this is imperfect in the following
sense : if one takesl 2 L' and then takes two derivatives, then it will not end up being
in L , which means that the spaces for both sides of the inequality do not perfectly match
with each other. A more subtle observation is that the ternR? on the right hand side match
with the two derivatives we need to take, so it is in some sense scaling invariant.

7.1.3 Uniqueness for variable coe cient operators in divergence form - Energy
estimates

Before we go further, we replace by a variable coe cient operator

@' (x)@u="fin ;
u=00n @:

Sincea’ (x)@ is a vector eld, we call @a (x)@ a divergence form of operators. Our con-
vention of the order of computations for @ (x)@is @(a' (x)@). If we try to reproduce
the arguments above, then we note that the only requirements fag area; 2 L and (a;)
is uniformly elliptic ( strictly positive de nite ). Note that we do not need further regularity
on a; since the rst thing we do in L2-based estimates is to integration by parts.

Remark 7.2 However, note that one cannot put rst order terms into the equation if we
want to use this method to performL2-based estimates.
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7.1.4 Uniqueness for variable coe cient operators in non-divergence form -
Maximum principle

Since the weak maximum principle also applies to operators of the form

al@@u+ b@u+ cu= f;
u=0on @:

Note that a! @@ is in non-divergence form. The requirements for the maximum principle
to hold is to requirea2 C;b2 C;c2 C with ¢ 0. So, we don't neeca 2 C! compared to
the divergence form above.

Remark 7.3, In Nash-Moser theory, you still can treat in two di erent ways by using diver-
gence form and_?-based estimates or non-divergence form and maximum principles.

7.2 Existence of solutions - L2 theory, duality argument

One kind of arguments, which manifests the idea in numerics, is to consider the di erence
quotients pu := YN U0 45 produce an approximate solution. By re ning your grid, one
may get an exact solution. The arguments in [7] is largely based on this notion.

We introduce a duality argument, which can be adapted to many other problems. By
replacing by P, ~ 7

u vdx= u ( v)dx

is written as 7 7

Pu vdx= u P vdx;

For P = a' @@, we haveP = @@a' andP = @a' @, we haveP = @d'@. If
P = P , we sayP is self-adjoint (as a bounded operatoH} ! H 1).
The adjoint equation becomes

(
Pv=g;
Vie =0
while the original equation is
Pu=f;
Uj@ =0:
The duality relation can be written as
z Z
ug= vt

Note that the energy estimates for the adjoint equatiorkvky: k gky 1 implies
Z
ug k VkH&kf ky + Kk ng 1Kf Ky 1



27

R
If we know the quantity u gforall g2 H 1, then this uniquely determinesu 2 H}. For
now, g 2 Ran( ), a subspace of H !. Moreover, we have
Z

u:Ran( ) ! R; g7' ug

and thus we are allowed to use Hahn-Banach theorem to extend itto: H 1! R. How-
ever, keep in mind that Hahn-Banach theorem does not give uniqueness. We only obtain
uniqueness ifRan( ) is dense in H 1.

The discussion above can be summarized into the following diagram.

Energy estimates forP implies the existence fo and the energy estimates foP also
implies the existence folP . Also, we have the other way around.

To prove the non-existence of a solution t&, one can prove by claiming that there are
no nice energy estimates foP . This is the idea of [25] in showing that not all di erential
operators are locally solvable.

7.3 Lax-Milgram theorem

If you have a Riemannian manifold, there is a corresponding operator called the Laplace-
Beltrami operator. It is self-adjoint with respect to the Riemannian metric. In other words,
whether the operator is self-adjoint with respect to a weight function, if we write everything
in local coordinates. Now the question is whether we can prove estimates even if our operator
is not self-adjoint.

For %n operator inzdivergence form, a formal compzutation leads to

Pu udx= ( @'@+0@+u udx= a @@u+ bBu@u+ c?dx;
which result in a corresponding quadratic fornB : H3 HJ ! R given by
B(u;v):= & @@+ bv@u+ cuvdx:

The important property is whether we have
. 2 .
B (u;u) ckukHé,

which is called the coercivity property. A good feature is that the coercivity property would
be more robust when we try to introduce some nice weights. However, an operator is self-
adjoint or not usually depends on speci ¢ choice of weights.
The key ingredients of Lax-Milgram theorem are the coercivity assumption plus a duality
argument, where the duality stu is hidden in the proof of Lax-Milgram thoerem. Though
[7] does not call the argument before as a duality argument, the idea is essentially the same.
By combining these ingredients, one can prove solvability by Lax-Milgram theorem.
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Remark 7.4. An advantage of Lax-Milgram theorem is that it can handle second order elliptic
PDEs with rst order and zeroth order terms.

For the sake of completeness, we record the results in [7, Chapter 6.2] here.

Theorem 7.5 (Lax-Milgram Theorem). Assume thatB : H H ! R is a bilinear mapping,
for which there exist constants; > 0 such that

1B (u; V)] kukkvk; B (u;u)j kuk?:

Finally, let f : H ! R be a bounded linear functional oH. Then there exists a unique
elementu 2 H such thatB(u;v) = f (v) forall v2 H.

Proof. The proof is sketched as follows.

Step 1:

Step 2 :
Step 3 :

Step 4 :
Step 5:

Step 6 :

Application of Riesz representation theorem to obtain a unique elememt2 H for each
u such that B(u;v) = hw;vi and denotew = Au.

A is linear and bounded : a direct estimate by de nition.

A is one-to-one andR(A) is closed : it suces to prove kuk? B(u;u) h Au;ui
kAukkuk.

R(A) = H : proof by contradiction.

Riesz representation theorem applied again to obtam 2 H such that hw;vi = f (v)
for all v and hence by Step 4Au = w for someu.

Uniqueness aofi.

Remark 7.6. If B is symmetric, then one can shov8( ; ) is an inner product onH. With
symmetry of B, one can apply Riesz representation theorem to prove this directly. So the
importance of Lax-Milgram theorem is that it can apply to PDEs with rst order terms as
we can see in a second.

We discuss the speci B : H3() . H3() ' R, where

B(u;v)= & @Qu@u+ H@uv+ cuvdx:

Then one can check the following energy estimates :

IB(u; V)] kuky 1tkvky 1 kuky 1 kuk?, + B (u; u)j

for some; > O, 0. One can note from the computation that ifd = 0, then one can

take

= 0. In general, we obtain a unique weak solutiom 2 H}() for the boundary value

problem

Lu+ u="Ffin ;
u=0on @

forany f 2 L2.
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Elliptic boundary value problem 2 - Maximum principle approach,
Variational method

Date: February 9, 2023

Last time, we setP = . @a’' @+ t%@+ c with azcorresponding bilinear form

B(uyvy= Puv= u Pv= al@@u+b@uv+ cuv:

If it satis es the coercivity condition B (u; u) Ckukﬁ&, then we have thel ? solvability.
An important case is whenP is self-adjoint. Technically, one can add a weight(x) > 0 to

make an operatorP self-adjoint. In other words, we change the measure frodx to ! (x) dx.

8.1 Maximum principle approach to prove existence - Perron's method

For maximum principle, one can think of it as aL! theory if one wants to compare
it with the L2 theory. The setting is to write the operator in the non-divergence form :

P= a@@+b@+ c We assume that maximum principle holds folP. (Assumeg;
symmetric, positive de nite andc 0.) In the following, we would like to nd solutions to
Pu=f
u=20

We can nd a sub-solutionu and a super-solutionu, . A priori, a sub-solution (in the
setting of a boundary value problem) means thaP u f andu jg 0. Similarly, a
super-solution means thattu, f andusjg O.

As shown in the graph (for a one-dimensional case), if we make the function convex
enough, then by the positivity of (g; ), the Hessian will dominate the negativeness and we
get Pu f. Then it follows from the maximum principle that if a solution u exists,
then it is in between any sub-solution and any super-solution. Moreover, it is unique by
the maximum principle provided the existence. Therefore, it would be both the largest
sub-solution and the smallest super-solution.

Supposeu? ;u? are two sub-solutions, then we claim that mafu® ;u?g is still a sub-
solution. We provide a heuristic argument. If we consider the one-dimensional case, then
the only place we need to take care of is the intersection poirg of the two sub-solutions.
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At xo where whereu® ; u?> meet with each other, since the coe cients ol@@ is negative,
we know that (P maxf ut ; u? g)(xo) = :::+ ¢ 4, with ¢ < 0. Therefore, heuristically speaking,
(P maxf u ;u? g) can be su ciently negative at xo. By this philosophy, the max of all sub-
solutions should be still a sub-solution. We also want to show it is a super-solution. The
idea here is to increase a sub-solution a little bit would still be a sub-solution.

By implementing this, one actually needs the solution to be at least?. To get rid of the
regularity issue, we reinvent the notion of sub-solutions and super-solutions in a way that
resembles the proof of the maximum principle.

De nition 8.1. We sayu (resp. u.) 2 C() is a viscosity sub-solution (resp. super-
solution) to Pu = f 2 C() if the following property holds : if for any X, 2 and any
function' 2 C2()suchthat u ' (resp.u, ') has alocal max (resp. min) atxo, then

P' (Xo) f(xo) (resp.P' (x0) f(Xo)):

If uis a viscosity sub-solution and a viscosity super-solution at the same time, then we
say u is a viscosity solution.

Remark 8.2 One can also add boundary condition to it as what we did in the baby version of
the de nition of sub-solutions and super-solutions to take the boundary value into account.

Motivation of the de nition : Supposeu 2 C?() is a sub-solution and ' touches
u from above at a single pointxy, then in the smooth setting,

u (Xo) = ' (Xo); Du (xo)= D' (Xo); D?u (Xo) D? (Xo);

which impliesPu (xo) P' (Xo). Therefore, if we adopt the baby version of the de nition for
sub-solutions, then one needBu (xg) f. Therefore, it is natural to ask thatP' (xp) f
for all ' 2 C? satisfying some \touching" property from above. Note that touching from
above at a single pointimpliesthau ' has a local maximum at this point, which coincides
our de nition. This de nition does not rely on higher regularity.

Sketch of the proof for the existence : Now in this sense, it follows directly from
the de nition that the maximum of two sub-solutions is also a sub-solution. The next part
is to show that the largest sub-solution is also a super-solution. We prove by contradiction.
Suppose not, then there exists & 2 C? touching from below atx,, which satis esP' (o) <
f (Xo). By continuity, we know P' (x) <f (x)in jx X < for some small > 0. Then
by lifting ' by a su ciently small distance " > 0, we note that the yellow line is a sub-
solution since it is the maximum of two sub-solutions, which leads to a contradiction with
the assumption thatu™® is the largest sub-solution.
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However, this argument may not be as rigorous as we want since lifting by a small number
still can ruin the property that ' + " and u™ only intersect nearx (i.e. jx Xoj < ). To
compensate this, we need to bend+ " down away fromx, to make sure the contact point is
always localized. To be specic, we use+" (X Xg)? instead. This further modi cation
helps us to eliminate the counterexamples as shown in the following picture.

Remark 8.3 There are some downsides of this argument. In the proof, we need to take the
maximum of a bunch of functions. However, even if we suppdsg2 C! ,' (x) :=sup, ' n(X)

is still probably not continuous. A counterexample is that one can approximate the Heaviside
function by smooth functions.

On the other hand, notice that in the proof, we only use the continuity implies that we can
obtain a maximum in a compact set for sub-solutions, so it is natural to work with upper-
semi-continuous functions for sub-solutions (resp. lower-semi-continuous functions for super-
solutions). However, if we adopt this de nition, then a viscosity solution is continuous again
since it is not only a sub-solution but also a super-solution. We need a further modi cation.

For a locally bounded function, we de neu = limsup,, , u(y), which change anL?
function to an upper-semi-continuous function. Similarlyp (x) = liminf y, 4 u(y) can change
anL?! function to a lower-semi-continuous function. This implies the following modi cation
of our de nition.

De nition 8.4. We sayu is a sub-solution ifu is a sub-solution in the previous sense.

Then we work through the previous argument with the new de nition for sub-solutions
(super-solutions), which would still work well and gives a solution in viscosity sense. This
completes the sketch of the proof.

Remark 8.5. Note that if u is the viscosity solution, this means that the upper-semi-continuous
function u is a sub-solution and the lower-semi-continuous function is a super-solution.
However, sub-solution is below super-solution, which implias u at each point, and
thereforeu is continuous.
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Remark 8.6. Note that u = 0 in the viscosity sense. does not imply u =0 in D°for free.
We need some regularity theory. So the construction of a solution using maximum principle
is not the easiest way we can do.
The reason why we care about this approach is that this also works for nonlinear equations
with maximum principles, such as the fully nonlinear equation
det(D%u) = f:
See [11] for further discussions.

All the discussions here for viscosity solutions can be found in [6].

8.2 \Variational methods
Suppose we are in the self-adjoint case :

P= @ @+c
with a corresponding bilinear formB.
The idea behind the variational methods is to look for the solutiom as a minimum point
for some functional. However, in order to ensure the uniqueness of the solution, we may want
a stronger assumption that our functional only has a unique minimum. A simple observation

is that a strictly convex function has a unique minimum.
In calculus, in order to solveAx = bwith A > 0 via numerical methods, we consider

mxin %AX X b x:="(x);
where a critical point x, satis es
D' (x)= Ax b:
So by trying to minimize the functional, you nd a way to invert this matrix, which is faster

than computing the inverse of a matrix in numerical methods.

By replacing A with P, v%e de ne 5

1 1
"(u) = éPu u f udx= Eb(u;u) f udx;
whereb(u; u) is the integrand in B (u; u). From the previous discussion, it is natural to claim
that if P is coercive, then the solutioru is the unique minimum point for' . To make this
precise, we bring in the Sobolev spaces. In view of the appearance of in b(u; u), we set
X = Hg. Then' :X ! Ris strictly convex, that is,

Uty W),

which follows from completing the squares
()t (V) u+tv

] — 1 . -
5 ( 5 )_ZB(U viu v) O
The equality holds if and only ifu = v. The strict convexity guarantees the uniqueness of
minimum.
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Moreover, we show that coercive away from 0 since

oy W=
In fact, one can prove by Poincare inequality that
j' (uj  kDuk?, (8.2)

for some; > 0, which is su cient for the existence of minimizers.

In R", one can prove that convex functions are continuous iR" so we have a minimum.
However, in the Hilbert space, we don't know whether we have a minimum.

Luckily, we also have a notion of weak convergence in Hilbert space, that ig, * u in
X is equivalent to sayu, v! u v forall v2 H. But convex functions are in general
not weakly continuous. We work on weakly semi-continuous functions to ensure that there
exists a minimum as in the modi cation in Perron's method.

We claim that ' is weakly lower semi-continuous in the sense that, * u implies
liminf ' (u,) ' (u).
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Elliptic boundary value problem 3 - Variational method, Higher regularity
Date: February 14, 2023

9.1 Variational methods (continued)
For the boundary value problem

@'@u="fin ; f2H ) ;
u=0in @ ’

R . .
we have the Lagrangiarn. (u) = %a” @@u fudx. We look for miny, 1) L(u).

Theorem 9.1. The LagrangianL has a unique minimumu, which satis es the boundary
value problem.

Proof. We start with a minimizing sequenceu, 2 H} such that

lim L(u,) = inf L(u):
n'l u2H}

Step 1 : Extracting a weak convergent subsequence thanks to coercivity

Then by coercivity (8.2), we know thatu, is bounded inH3. Now we can nd a weakly
convergent subsequence, * u in H}, which by de nition implies u, v ! u v for all
v 2 H}. One can also interpret this as a convergence D°. By compactnessy, ! uin L?
as well.

Step 2 : Convexity of L in pimplies lower semi-continuity and hence existence
and uniqueness of the minimizer

We claim that L is convex implied (u) liminf L (u,). In fact, we only need the convexity
of L, whereg(Du;u;x) = jal @Qu@u  f (x)u. We also writeL(p;z;x) = 3@ pip f(X)z
andL(u)= L(Du;u;x)dx.

SincelL is convex inp ((8.1)),

L(hpi+(1  h)p2;z;x)  hL(pi;z;x)+ (1 h)L(p2;z;x); h2[0;1];
where we omitz; x in the following computation for simplicity. Then we have

(1 h)(L(hpe+(@  h)pz) L(pz)) h(L(p) L(hpa+(1  h)p2))
and hence

L(hp,+ (1 h)pz) L(p2) L(p) L(hpe+(1  h)py).
h 1 h '
Leth! 0, we get

DpL(p2;z;%) (Ppr P2)  L(p1;ziX)  L(p2;z;X):

In other words, this says that the tangent lineL(p;;z;X) + DpL(p2;Z;X) (p1 P2) is be-
low L(p:;z;X). This can be also viewed as a de nition of convexity provided that is
di erentiable.

Now we replacep, by Du, p; by Du,, z by u, then

L(Du;u,;x) + DoL(Duju,;x) (Du  Dup)  L(Dup;un;X):
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By weak convergenceD,L(Du;u;x) (Du Dup) ! 0 thanks to the uniform boundedness
of ku upky: and dominated convergence theorem. Moreover, a direct computation shows

J(DpL(Du;un;x)  DpL(Duju;x)) (Du  Duy)j j f(X)jjun  ujjDuy, Duj;

which seems harder to estimate. Then we need to apply Egorov theorem to extract a uniform
convergent subsequenag, on G- for any " such thatm( nG-) <". (Note that u, ! wuin
L2 implies u£ I u almost ever&where by passing to a subsequence.) Therefore,

L(uy) = L(Dup; un;X) L(Du;up;x)+ DpL(Du;u;x) (Du  Duy)dx
Z
+ (DpL(Du;u,;x)  DpL(Du;u;x)) (Du  Du,)dx:
G-

Setn! O,
limL(u,) L (u):
n

(In full generality version, one then needs to let ! 0.) Therefore, there exists a unique
minimizer of L, where the uniqueness follows from the proof last time by strict convexity.
Step 3 : The unique minimizer  u solves the equation indeed
Now we show that the minimizer solves the equation. Sinde(u + hv) L (u) for all
v2D(),
Z Z

= %L(u+ hV)jho = a@@v f vdx= ( @' @u f)vdx;
where in the last ”26’
( @'@u f)vdx=h @ @u;viy 143 hfvi
if we want to write in a rigorous way. This implies that
@' @Qu=f
in D°

Remark 9.2 The method applies to nonlinear problems.

Convexity can be weakened : there exists a Palais-Smale condition for a minimizing
sequence to be compact.
If L is not di erentiable, we can introduce the subdi erential @ I(u), which is all the slope
for which a line is under the graph : we sag2 @ (v) ifforall u,L(u) L (v)+p (u v).
This is also connected to Legendre transform.
When we discuss the zero Dirichlet boundary condition, it is inherited in the function
spaceH}. If we assume that there exists a minimizer itH 1, then what is the equation
solved by the minimizer?

For v 2 D(), same computation applies @a' @u = f. Now boundary condition

asks us to uses 2 C* (),
Z Z Z Z

0= al@@v f vdx= ( @' @u f)vdx+ ja @ vd = jal @ vd;
@ @
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which implies that )
i@ @u=0
on @, which is a conormal derivative. If (a;) = | then it is just a normal derivative.
This gives a solution to our Neumann boundary condition problem.
For the Neumann condition,

@ @Qu = f;
ja’ @Qu=0:
Solution is not unique since we can add any constant to a solution. For existence, we
compute 7 7
fdx = @' @udx =0;

and hence solution does not exist unIesFéf = 0. Later, we will make this su cient
and necessary. (We do not specify any regularity and only keep the argument above in
a heuristic level at this time.)

Note that for Neumann boundary condition, we cannot say 2 H}. Instead, the only
regularity we have isu 2 H*. However, the dual space ofi! is not a good space and it
is just denoted by H1)° Since the trace operatoT : HY() ! H:z(), we know that
for' 2 (Hz()) =H 2(),

' T:HY) ! HZ() ! R
is a bounded linear functional and hence T 2 (H!()) ° Therefore, one can view this
as the inclusion )
H2() (H'()°

The regularity here is subtle.
9.2 Elliptic regularity
From di erent kinds of methods, we reach the conclusion 2 H whenf 2 H 1.

Theorem 9.3. Given a compact domain . Supposef 2 HX() andal 2 Ck, thenu 2
Hk*2() fork O.

Remark 9.4. For k su ciently large, f is smooth enough, then we at least need some reg-
ularity for al for the equation to hold in classical sense eventifis smooth. Keep in mind
that this has nothing to do with solvability. In other words, one can put lower order terms
into it and invoke the argument that we are about to discuss as long as you know that there
exists a solution.

Proof. As an example, we only prove a simple casd :2 L2 impliesu 2 H2\ H}. It suces
to prove
kukye K uky: + Kf kg2 (9.1)

Step 1 : Localization will su ce
First note that it su ces to prove in su ciently small region around each point. Since
is compact, we can nd a nite covering to reduce the proof. Then we only need to consider
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two cases - a ball inside the interior or a region near the boundary. We provide an argument
to precisely verify this localization argument.

Choose a cut-o function toV, a neighbourhood ofkg. Thenv = u is well-de ned and
we compute

Pv=P(u)= Pu+C(r ru+r? u+r u):
Then we know
kPVkLZ . kP UkLZ + kUkHl:

Moreover, we knowkvky: Kk uky:i. So it su ces to prove the inequality for v instead ofu.
Indeed, since the region is compact and hence there exibtsgf., whose supports cover the
region, then

X X
KukKpz(y . Kvickpzy . kviky1 + KP vk 2: . Kuky: + (KPuk 2 + kuky1);
k=1 k=1

which completes the proof.

Therefore, we just need to do localization and prove the localized inequality, that is,
proving (9.1) with u localized.

Step 2 : Proof of the localized version in the interior

For xo 2 , we select a ball Br(Xq) with R to be determined. By a linear transfor-
mation, we can assume without loss of generality thah(xg) = |. With a slight abuse of
notation, we denoteA = (a;) and A= @a' @. Then

kr 2uk.2 k ukiz Kk Aukiz+ K(A ) uk.: k Auk 2+ c(R)kr 2uk:;

wherec(R) ! 0OasR! 0. So we can seled® small enough to absorb the last term to the
left hand side and get the desired bound

KUK\ 28, (xoy = KT 2UKL2(B4 (o)) - KAUKL2(B4 (xo) = KF KL2(Bg (xo)

It su ces to show the case whenx, 2 @. By introducing a cut-o function near Xxq, we
replaceu by u . Note that this does not kill the boundary condition.

Then we consider the boundary case.

Step 3 : Flatten the boundary (requiring some regularity assumptions of the
boundary)

We nd a change of coordinates to the half ball case. Obviously, the coe cients of the
operator would change. When making the change of coordinates, we only enswafe)(x,) =
.

Remark 9.5. Can we atten A at the same time? Ifd = 1, then we can atten the real line
with metric ds®> = a(x) dx? by choosing the arc length parametrization. Id = 2, then it is
overdetermined and we cannot atten it. However, we can make it conformally to identity,

A(X) 7' c(X)I;

then this is relevant to complex analysis@. If d 3, the answer is no.

Step 4 : Proof of the localized estimate near the boundary when A
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We rst prove for the Laplacian case as an instructive model case for the problem. The
main idea is to distinguish the tangential derivatives and normal derivatives. With this idea
in mind, one can recover the rigorous proof.

We only consider the half ball region in the following arguments without writing out
explicitly. We have u 2 L?, we want @u 2 L2. For tangential derivativej n 1 and
any k, we compute 7 x Z

u@u dx = (@@Qu)?% dx;
k
where the boundary condition is zero since at least one derivative is tangential. By denoting

@ for any tangential derivative and @for any derivative, we know from this integration by

parts that
k@kﬁz k Uksz@kLzl

kkaz k UkLZ:
Then it follows from the original equation that the second order non-tangential (normal)
derivative

Therefore,

k@uk?, k uk_>+ k@aduk, :;
which implies
k@uk, > k ukz:
Step 5 : The general case near the boundary in which (@l )(xq) = |
We write

v @ (@ =f @a(x) ax)@ HY@v cv;
then by denoting the rst and zeroth order remainder byRv, we can apply the bound for
in the previous step,
kvky, k fkeo+ k@ (x) al (xo)) @@vk. > + KRVK2;

whereRv
Note that

k(@ (x) a’(xo))@@vk,. k (' (x) &’ (xo))ki: kvky:2 kvky 2;
for su ciently small , where we can make X small enough in our rst step. For lower
order terms, ) _
kRvk > = k(@' )@v+ B @v + cvk 2 k vky::
Hence,
kvkyz K vky: + Kkf k| 2;
which completes the proof.

Remark 9.6. In fact, we can always obtain a stronger estimate like what we have in Step 4 for
. The tool is the following generalized Poincae-type inequality for v2 H?() ;vjg =0
in a domain of size 1,
kvk 2 + kr vk 2 k @vk,z:
Note that v 2 H?() ;vje = 0 is equivalent to v 2 H}\ HZ2. The proof follows from a
simple contradiction as the usual Poincae inequality. The only di erence is that we would
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obtain @v = 0 and vjg = 0. This leads to a contradiction since@v = Cx and hence
v(x) =  Cyxg + D, which is a hyperplane of which@ cannot be a subset.
Then By resizing it to a domain of radiusr, we know

r 2kvk.z + r kr vk 2 k @vk,z;

where we gain smallness if is small. The smallness helps us to absoHy! norms to the H?
norm. But this means that we have a stronger estimate whenis su ciently small :

kaH_2 . kf k|_2:

9.3 More general boundary conditions

What is a good boundary condition? We discussed Dirichlet and Neumann condition just
now. We also have Robin condition%—)“: u, which has di erent traces. The leading order
of Robin boundary condition is Neumann. P

Now, we discuss another type of boundary conditio@u = ; , , & @u in the half plane
case.

On the boundary condition for half plane, u= f can be written as

(@+(@*)u=t:
If we only take the Fourier transform in the tangential direction and still use to denote the
(n  1)-vector, then we get a second order ordinary di erential equation

@ *b=P (9.2)
with two fundamental solutions el J; e *I | to the homogeneous equation. One grows ex-
ponentially as we move inside while the other decays exponentially. Set

bh=(@ j hb; b=(@+jjb; (9-3)
then
@+ij=8 (@] D=1
For uy, by starting from a vanishing condition at in nity and solving it towards the boundary,
we obtainu;jg . For u,, you want to solve from near the boundary towards the interior. To
solve this, we want to use the boundary condition to give,je from ujjg -
For the zero Dirichlet boundary condition, we haveu; = u, on boundary thanks to (9.3).

For the zero Negmann boundary condition impliesi; =  u, on the boundary thanks to

(9.3). For@u= a@u, X

@u = a.]@u (@ iaj j)b:O;

and we knowb; = (@ | j)b. Subtracting gives ( ia; ; + ] j)b = b,. If the symbol does
not vanish, then this givesbjg . The boundary condition in this example is called the
Lopatinsky boundary condition.

On the other hand, the way of doing Fourier transform in (9.2) can give the Poisson
formula on the half space. See [17, Chapter 8.3].
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Elliptic boundary value problem 4 - Fredholm theory
Date: February 16, 2023

Recall the following motivating example from last time. Fo® = @a’ @ is in divergence
form, we consider the Neumann boundary value problem

Pu=f in
jdl@u=00n @
Heuristigglly speaking, the obstruction of its solvability is a one-dimensional condition dn,
whichis f =0. Onthe other hand, the obstruction of its uniqueness is also one-dimensional
since it would be unique up to a constant.
The summary we are going to make today is : Obstructions to solvability of the bounded
linear operatorP : H3}() ! H () are only nite dimensional. In this context, we also

want to study the adjoint operator P : H3() ! H (). A more precise version is stated
as Theorem 10.12. This brings us back to functional analysis.

10.1 Recap of functional analysis
10.1.1 Basics

SupposeX;Y are two Banach spaces witd : X ! 'Y bounded and linear. Then for dual
spacesX®Y? T :YO XDPis also bounded and linear.
If

kerT :=fx2 X :Tx=0g
is not empty, then the solution toTx = y will only be determined modulo elements in keF.
The range of T isR(T)= TX Y while the range of T isR(T )= T Y° X2 For
hTx;y3 = hx; T yY;

if y°2 kerT , theny®? Tx and henceR(T) ker(T )?. Similarly, R(T ) ker(T)”. In
general, one can prove that

R(T) =ker(T )?; R(T ) =ker(T)”: (10.1)
The closed range theorem in functional analysis asserts that the following conditions are
equivalent for any closed operatof :

R(T) closed,;

R(T ) closed;

R(T) =ker(T )?;

R(T ) =ker(T)?.
Going forward, we also us@&l (T) to denote kerT. SupposeR(T) is closed, then

T:X=kerT! R(T) Y

is bounded, injective and surjective. On the other hand, the open mapping theorem tells us
if T is surjective, then it is an open mapping, that is, the image of an open set undgris an
open set. An easy corollary is thal : X=kerT ! R(T) is invertible with a bounded inverse.
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(Thanks to the open mapping theorem, the inverse is continuous and hence bounded.) Hence,
T Y:N(T)? ! X=kerT, which is related to our solvability.

10.1.2 Fredholm operator

De nition 10.1. We sayT is a Fredholm operator if

N(T), N(T ) are nite dimensional;
R(T), R(T ) are closed.

Remark 10.2 In fact, the second line in the de nition of Fredholm operator is redundant in
view of the following fact that dimY=R(T) = dim N(T ) is nite and hence closed. See [1,
Section 4.4].

Moreover, sinceR(T) is closed, we knowR(T) = N(T )? and Y=R(T) is well-de ned. In
general, for any closed subspad¢eé H, H=K is isometrically isomorphismK ? since

H=K | K?; h+ K 7' h,with h=h;+h,2 K + K?

Therefore,
dimN(T )=dim Y=R(T):

The dimensions dinN (T); dim N (T ) tell us how many obstructions we have. The rst
one characterizes the obstructions for uniqueness while the second one characterizes the
obstructions for existence.

The outcome of today's class is the main theorem - Theorem 10.12. Let us nish the
introduction of tools in functional analysis before proving this theorem. One of the reasons
why the Fredholm operators are introduced is that they are stable in the following sense. In
particular, for second order elliptic operator, it is stable under rst order perturbation.

Theorem 10.3. SupposeT is Fredholm, thenT + S is also Fredholm if
S is small (kSk is small compared tokTK);
or S is compact.

Proof. See [1, Corollary 4.47, Theorem 4.48].

Remark 10.4 Note that the Fredholm theory in [7, Appendix D] is incomplete in the sense
that they only consider the caséd = |. However, in view of Atkinson's theorem, [1, Theorem
4.46], we can nd an almost inverse, so they are equivalent.

Remark 10.5 One can think of a compact perturbation as follows. A compact perturbation
might be large in at most nite dimensions. Note that even ifS is small, it may change the

dimension of kefT and kerT . However, as long a$ compact/small, the index of T does

not change, which is de ned as follows.

10.1.3 Index of an operator and invariance for Fredholm operators
De nition 10.6. The index of T is given by

ind(T) :=dim N(T) dimN(T ):
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For second order elliptic equations, lower order terms are compact. Supp&se  @a’ @+
B @+ c, Note that @+ c: HZ! L2, and the inclusionL? H ! is compact thanks to the
compactness inclusion of its duaH} L2 by Rellich-Kondrachov. (The dual operator of a
compact operator is compact.)

Moreover, note that P depends onx, if we choose another operator with the principal
part @a’ @, then a linear transformation

Po=tl +(1 tA

can help us to turn @8’ @ into  , which is uniquely solvable in H} for f 2 H * and
henceind( ) = 0. So the dimension of kernel and cokernel are the same. Note that
ind(P;) will keep the same because it is continuous with respect todue to the fact that
small perturbations will not change an Fredholm operator out of the Fredholm class and
ind(P;) 2 Z. Note that we cannot connect any two operators together. Let's say and
some arbitrary B, then (t + ") + (1 t+")B (t+(1 t)B) = "( B), which
requires at least B to be bounded. However, this is natural for any two second order
elliptic operators.

Remark 10.7. The index of is zero follows from the atness of R". However, this does
not hold for general manifolds, vector bundles. The index of elliptic operators is a topological
invariant.

Example 10.8. Foramatrix A:R"! R™ indA=n m.

Example 10.9. We take “2(N), the following operatorT : *2! “2 given by
T(x1;  Xny )= (05X )

We haveN (T) = fOg and N(T ) = spanf(1;0;0; )g. Therefore,ind(T) = 1.

Proposition 10.10. For two Fredholm operators,ind(T S) = ind(T) + ind(S).

Proof. See [1, Theorem 4.43].

Proposition 10.11. When X =Y, | is a Fredholm operator and hence by perturbing by a
compact operatorK , we knowl + K is Fredholm of indexO.

Proof. See [7, Appendix D Theorem 5], [1, Lemma 4.45].
10.2 Application of Fredholm theory - Solvability of second order elliptic oper-
ators

Theorem 10.12. SupposeP is a second order elliptic operators in divergence form, then
P;P : H} ! H ! are Fredholm. In particular, N(P ) = spanfv;; ;wg, N(P) =
spanf uq; ;ug for some nite integer |;k and the solutions exists iff ? f vy,  wg
(f 2 R(P)= N(P )?), while the solutions are unique modula;; ;u.

Proof. We start with our operator PZ: Hs! H 1 For the bilinear form

B(u;u) = a @@u+ b@u+ cu?dx;
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we want a coercive propertyB (u; u) Ckukﬁi&. To ensure that it holds, we choose 1
and changeP to P + , then

B (u;u) ckr uk?,; + kuk?, C kuk :k@W 2> + kuk?; :

If 1, then B(u;u) k ukal. Hence,P + s invertible thanks to the Lax-Milgram
0,

theorem, that is, the solution exists and is unique.
Moreover,u! u;H } 7! H lisacompact perturbation, sc® is a Fredholm operator.

10.3 Application of Fredholm theory - Eigenvalues and eigenfunctions

We say is an eigenvalue if kerp ) 6 f0g, that is, Pu= u has nontrivial solutions.

Fredholm theory tells us any 2 C has nite multiplicity. And is an eigenvalue for
P implies is an eigenvalue forP since 0 =ind(P) = ind(P ) = dim N(P )
dimN (P ).

Where are these eigenvalues? Note that we can changeto P + to examine the
eigenvalues, so that we can take su ciently large so we have solvability. For Pu = u,
we haveu = P !u. By Rellich-Kondrachov,P ! = K : L2! L2 is compact since both
H} L?2andL?! H ! are compact. ThenKu = ‘'uimplies ! is an eigenvalue of a
compact operator.

A compact operator has nitely many eigenvalues or countably many with an accumulating
point at O.

Theorem 10.13. P has countably many eigenvalues, andlim,; j nj=1.

For P = @a' @+ c, we know P is self-adjoint and hence eigenvalues are real with
orthogonal eigenfunctions corresponding to di erent eigenvalues. By normalizing it, it gives
an orthonormal basis.

For the coercive case,

kuk?, = P u;ui = B(u;u) Ckukﬁ&

So the eigenvalues can only go to the right. Even if ol® is not coercive, we can still shift
by to make it coercive, so that the eigenvalues are also accumulating af +

The picture in the non-symmetric case, there is still a barrier for eigenvalues on the left,
but the eigenvalues can be complex numbers. However, the rst eigenvalue is still real, which
de nes the barrier. We will study this in detail next time.

Example 10.14. In the case ofR", one can also apply Fredholm theory. For + V,
supposeV has su cient decay at innity, i.e. jVj. R . Due to the decay property of
V,V :H!! L2is acompact operator even if we don't have compactness theorems in the
setting of R". Indeed, this follows from the computation

KVU, Vunkiz. K (Un  Un)Kize,) + R M;

whereku,ky: M and is a bump function with 1in Bgr such that (u, upy) 2
H3(B2r). Therefore, for R su ciently large, the second term is less than', the rst term
tends to zero asn;m ! 1  thanks to the Rellich-Kondrachov theorem in the bounded
domain B,g. On the other hand, is invertible when < 0 by applying Fourier
transform. Thus, + V is a Fredholm operator.
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Eigenvalues and eigenfunctions (continued)
Date: February 21, 2023

For ( ) .
Pu=f, P= @ @+b@+c;
u=0on @

we study Pu= u . By Fredholm theory, we nd

( kUk)

with limg: ] «j = 1. For  complex, we also havel, complex, then we can also change
b ;cto be complex but still need to keep the principal part real.

Proposition 11.1. If coe cients are smooth, then eigenfunctions are also smooth.

Proof. For u, 2 L? solvesPu, = Uk 2 L?, by elliptic regularity (Theorem 9.3), we know
ux 2 H2. By induction, u, 2 H? for any I.

11.1 Visualization of eigenvalues in the self-adjoint and non-self-adjoint case

If P is self-adjoint, then the eigenvalues are real. We consider= @a’ @ + c if all
coe cients are real. If we consider the complex setting, a natural assumption is

P= @dd@+c @=@+iBj;
with Bj and c real. Then @ is skew-adjoint and henceP is still self-adjoint. An example
of @ is the electromagnetic potenztial. Going ;orward, we use the complex inner product

Pu v= u Pv:
If P self-adjoint, thenPu = uZimpIies 7
Puu= u u= Kkuk?;

where the left hand side is equal to its adjoint, so its real, which implies the realness of
When P is not self-adjoint, we can write

P = Pseirt + Pskew;

where Pgr = ®*F— is a second-order elliptic operator whil®ge, = *5— is a rst order

operator. For any eigenfunctionu with eigenvalue , we compute

PU U= PgtU U+ Pgenu U=Re kuk?; + ilm kuk?;;
where Re ' Pgru u. kukZ, and

IMm ' PgewU U K uk?, + kuk_okr uk_ > Kk ukyikuk z:

Moreover, if Pss iS coercive, then Re ' Pgsu U ' K ukf|l and this can be achieved by
changing the operatorP to P + for some su ciently large as what we did in the proof
of Theorem 10.12. By normalizingkuk, 2 = 1, we get

Re 'k uk:  jlim j Kk uky::
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Therefore,jim | P Re + for some su ciently large  which makes the approximation
Pseit U U "k uk?, work. So the spectrum picture in the non-self-adjoint case can be sketched
as follows.

11.2 \Variational characterization of eigenvalues and eigenfunctions

11.2.1 Orthonormal eigenfunctions of a symmetric second order elliptic opera-
tor form an orthonormal basis

Proposition 11.2. SupposeP is symmetric, then theL? normalized eigenfunctions form
an orthonormal basis forl 2.

Proof. For P : H} ! H !, we assume it is coercive (if not, we consid& + ). Then this
implies the existence of? ' : H ! Hg, which follows from the Lax-Milgram theorem.
Furthermore, we considel? eigenfunctions (This is natural thanks to Proposition 11.1) and
this restricts the consideration to the compact operatoK := P 1:L2! L2

Supposef ;g ! O;u; are eigenvalues and orthonormal eigenfunctions fé. SetV :=
span :fu; g.

SinceK is symmetric and compact, it follows from the spectrum theorem for compact
operators ([23, Theorem 5.6]) thaf u; g form an orthonormal basis ifR(K) is dense. Then it

sucestoshowN(K)= N(K )= R(K)? is empty. This is trivial sinceK is invertible.

11.2.2 Variational characterization of the principle value

Now we still stick to the symmetric case with real coe cients so that the preceding propo-
sition can be applied tg,obtain an orthonormgl basiéu; g for L2 which consists of eigenfunc-
tions. Foru2 L% u=  qu, thenkuk?, = ¢, whereg = u u;. Then

X X X
Puu= gy iGY = i
and kuk?, * I3( j + )& and kukj, ' P( j + )*c® and so on.

Proposition 11.3. For P symmetric with real coe cients, the rst eigenvalue satis es

B(u;u .
( 5 ) = inf B (u;u);
uzH KUKf,  u2HEkuk 2=1

0=

which is called the variational interpretation.
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Proof. We keep using the notations above and suppoBeis coercive by adding a if needed.
Note that X X
B(u;u)= Pu u= i€ o &= okukf,
with equality if and only if Pu=ou.

Now it suces to show that if u 2 H3 with kuk,. = 1, then B(u;u) =  implies
Pu= oup (Itis actually an equivalence relation but the othgr implication is trivial.) Recall
that u= " gu; with g = u u;. Sincekuk.> =1, we know ; ¢ = 1. Hence,

X X
9-20= o= B(u;u) = q-thUj:Uj': qzi:
i i j
Therefore,¢ =0if ;> o. Since o has nite multiplicity, u= ", gu; isa nite sum and
it satises Pu= (u, which completes the proof.

Remark 11.4 Moreover, ifc, = 0, then we can nd 3 by using
. B (u;u)
= inf :
! u2Hu? ug kUkEz
This is kind of related to Lagrange multiplier.

By a side product of homework@juj = sgn(u)@u almost everywhere fou 2 H. There-
fore, B(juj;juj) = B(u;u). If uis an eigenfunction, thenjuj is an eigenfunction and hence
there exists a non-negative eigenfunction.

If there is another eigenfunction corresponding toy, one can make a linear combination
to let it have a zero, but this is impossible.

Proposition 11.5.  With the same assumption as in the preceding propositiong is a simple
eigenvalue andi, > 0.

Proof. We have already derived thatug is hon-negative. Thanks to the Harnack's principle
which will be introduced in the remaining lectures, we knowy is strictly positive unlessug
0. (One needs to use the full generality of Harnack's principle when the operator has zeroth
order term. See [11, Chapter 8].) If there exists another eigenfunctiog eorresponding with

o and linearly independent withug, then we can arrange thattiy  Cugj is not smooth for
somec. However, notice thatuy  cu is still in H3 and an eigenfunction corresponding too.
This contradicts with the fact that eigenfunctions are smooth thanks to Proposition 11.1.

Remark 11.6 Note that all the preceding propositions in this subsection combines to form
an alternative proof of [7, Section 6.5.1, Theorem 2].

Theorem 11.7. If P is not formally self-adjoint, then there exists a rst eigenvalueg 2 R
and simple withup > 0 and for any other ;, we haveRe ; > .

One can nd a proof in [7, Section 6.5.2], which shows the variational principle in this
setting by using maximum principle. The idea is similar to the one presented above.
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Examples of eigenvalue problem

Date: February 23, 2023

Today we do a wrap-up for the eigenvalue problems by providing some examples.
12.1 Basic examples with Dirichlet or periodic boundary condition

Example 12.1. In 1 dimension, we consideP = @ in [0;L] with Dirichlet boundary
condition. The eigenfunctions and eigenvalues are

Ug = sin K X - K 2
k — L ’ k — L
for k 1. If we choose Neumann boundary condition instead, then
Ux = COS K X - K 2
k — L 1 k — |_

for k 0. This means that we have an obstruction to solve the Neumann problems, which
are the constant functions, that is, we can only solve uniquely up to constants for Neumann
problems. Moreover, to ensure the existence of solutions, the source terms also need to be
orthogonal to constant functions thanks to Fredholm theory (Theorem 10.12).n

Example 12.2. If we choose a periodic boundary condition(0) = u(L), @u(0) = @u(L),
then ug = 1; o = 0 is the rst eigenvalue. One can view [01] as S' when the boundary
condition is periodic. We have
2k 2

L
for k 1. Note that in this example, from the second eigenvalue, we start to have multi-
plicity.
Example 12.3. For the operatorP = @a@ + cin |, with Dirichlet boundary condition,
it has a sequence of simple eigenvalueg< ; < < k< , Which is studied by using

the Sturm-Liouville theory. We omit the proof though it is not hard. It tells us ux can only
change signs exactlk times, which is called Sturm oscillation theory.

uk:eiTX; K =

Example 12.4. For P = with Dirichlet boundary conditionin [0 ; ] [O; ], we have
Upm =SINNXsinmy; n;m 1 nm = N2+ m?2

Note that we only need to consider the eigenfunctions in the form of separation of variables
since the operator can be written into the sum of two operators commuting with each
other, i.e. [@; @] = 0. This implies that they share common basis with at least in a
heuristic level. (See [24, Problem 4.5] for a general statement of this fact.)

Example 12.5. For P = in [0 ;2] [0;2 ] with periodic boundary condition in x;y,
then we have o

Unm = €™ €™ n;m2 Z; nm = N2+ m?;
which is a problem on torus.



48 TRANSCRIBED BY NING TANG  INSTRUCTOR: PROFESSOR DANIEL TATARU

12.2 Laplacian on n-sphere

12.2.1 Laplacian with boundary conditions, Bessel functions

Example 12.6. For D = fjxj 1g R?, we considerP = with Dirichlet boundary
condition. By writing itin (r; ), we haveP = @ 1@ 3@, where@ is the Laplacian
on the circle. Note that [ ; ] = 0, which implies they share common basis in view of

linear algebra of matrices. So it's natural to consider eigenfunctions in the form of separation
of variables. Since@; @ commute, we know the eigenfunctions are a product of functions in

and functions inr, namely u(r; ) = v(r)w( ). From before,w, = €X . By plugging this
back into the equation, we know

which has variable coe cients and we need to solve it for eack. Unfortunately, there are

no elementary solutions to this so that we need to introduce some special functions to solve
this and what we obtain are called Bessel functions. Though it is impossible to write down
the exact formula, we can obtain its asymptotic behavior. Moreover, by scaling, we can solve
the equation for all given solutions when =1, where is called the scaling parameter.
Suppose we xk and nd a solution for =1, which behaves like the following graph.

By noticing that the Dirichlet boundary condition for the eigenvalue problem requires(1) =
0, so the choice of = j are the speci c scaling parameter such that the scaling moves the
k-th zero to 1.

In the same spirit, we can solve the Neumann problem by looking for the speci c scaling
parameter such that the scaling makes%1) = 0.

Example 12.7. ForD = fjxj 1g R", we consider

P= = @ - le riz o 1
with Dirichlet boundary condition, where the g« 1 is the Laplace-Beltrami operator orS !
as a Riemannian manifold. In the previous example, we knew the spectrum of the Laplacian
on the circle so that this reduction helps us to nd the spectrum of . However, we do
not know the eigenvalues of & : yet. If we do a separation of variablesi(r;! ) = v(r)w(!)
with r 2 [0;1],! 2 S" 1, then we have

n 1
r

o W= W, Q@ @+r_2 V=V

We still get some Bessel functions if we knew is an eigenfunction of & : corresponding
to . Though we do not even write out the exact formula for & 1, we can obtain the
spectrum by a trick introduced in the following example.
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12.2.2 Spectrum of Laplacian on the sphere

Example 12.8. For the LaplacianP = s 1 on S 1 if wis an eigenfunction, that is,
w = w, with w a function living on the sphere. The idea is to extendv to R" by
homogeneity. Forx = rl 2 R", we can extendw to R" by setting

ux)=r w(!):
We want to choose so that u is harmonic. We compute
u= ( Ir Aw()+(n Lr 2w+ )r Aw();

which conveniently tells us should satisfy = ( +n 2), which is a quadratic equation
for . Since the growth ofu at in nity is at most as a polynomial and is smooth away from
0, we knowu 2 S ° Or to be more precise, one can apply [13, Theorem 7.1.18] directly
to know u 2 S ° By applying Fourier transform to u = 0, we know u can only be a
harmonic polynomial, which implies that is a natural number. (We can also argue by the
fact that harmonic functions are smooth.)

This in turn gives the eigenvalues of the spherical Laplacian. Given a harmonic polynomial
u of degree 2 N, ujs : IS an eigenfunction of & : correspondingto = ( +n 2).
Therefore, we proved Theorem 12.9.

Theorem 12.9. The spectrum of & 1 is given by
( ¢«1)=f ( +n 2): 2Ng
Remark 12.10 Though the spectrum is characterized by only one parameter for any dimen-

sion, it has very high multiplicities, which corresponds to how many independent harmonic
polynomials you can nd of degree and is roughly likeO( " 1).

Remark 12.11 See [12] for details of spherical harmonics and a decompositioh. 6§S" 1). In
speci ¢, see [12, De nition, Page 67] for the reason why we can extend this by homogeneity.

Remark 12.12 Note that the discreteness of the spectrum follows from the compactness of
the sphere. We can prove Rellich-Kondrachov compactness theorem for the sphere, which
is identical to the one on a connected and bounded domain. This can be applied to derive
the compactness of inverse operators like what we did in the proof of Proposition 11.2 and
hence implies the discreteness of the spectrum.

12.2.3 Examples with non-compact domains
Now we consider an example with non-compact domains.
Example 12.13. If u= u in R", then by Fourier transform, ( ? )b =0. Thus,
. P—
suppb fj j= g

which implies u cannot be inL? since the sphere is of measure zero. Therefore, only
admits generalized eigenvalues = 2 with generalized eigenfunctions = € .

Remark 12.14 Suppose
u=F *(g() &):
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For instance, in 2 dimeEsions, we write 2

u(x) = g(' ) ' = g(cos; sin )gxicos +xzsin ) g
1281

where! = (cos ; sin ), which can be analyzed by the idea of stationary phase method by

viewing | Xj and hence hasp; decay. (In fact, due to the rotational symmetry, one
JX]

can assumex; = jxj and x, =0.) Then it is natural to think of stationary phase.

In general dimensions, one can show that is smooth with jxj ™ V=2 decay by using
a general stationary phase method. Recall that when we implement the stationary phase
method, we need to consider the number of nonzero eigenvalues of the Hessian, which cor-
responds to the non-vanishing curvature of the sphere. (If one represent the ball locally as
a graph of a functionF, then the the number of nonzero eigenvalues of the Hessian, which
corresponds to the non-vanishing curvature of the sphere.) F& !, we know it has exactly
n 1 non-vanishing curvature, which givegxj (" Y72 decay. The point is, these generalized
eigenfunctions are almost.2 with a lack of 1=2 decay.

The conclusion for this example is ( )= R*, which is a continuous spectrum.

Remark 12.15 Forsome + V with V periodic, you may see band structure in its spectrum,
that is, combination of continuous and discrete spectrum.

12.3 Hermite operator (Harmonic Oscillator)

For on R",the reason why we do not have compact theorems is due to the translations.
To kill the possibility of translation, we add a potential to it.

In R", we consider thel—lerrr%ite operato& + jxj?:= H, which corresponds to
B(u;u)= Pu u= jr uj?+ jxuj?dx = kukﬁﬁ:

12.3.1 Compactness embedding H}, L2

Heuristically, given a functionu 2 H}, if we consider the enemy for Rellich-Kondrachov
produced by translation as in Section 2.5, then we would notice that when the transla-
tional parameter n is large enough, thex in the term jxuj? kicks in, which makes the norm
su ciently large. Therefore, we would expect that we have compact embeddings.

In fact, the same kind of proof by contradiction for Poincae's inequality in [7] applies.

Proposition 12.16. We have the compact embeddind}, L2

Proof. Step 1 : H} continuously embeds into L2
First, we showH} L2 is a continuous embedding. It su ces to show

kuk, 2 CkukH&' X
Suppose not by contradiction, then there exist§u,g such that
kup K, 2 nkunkHﬁ :

Without loss of generality, we assum&u,k, > = 1. Sincekr u,k 2  1=n, we knowkupky1
2. Therefore, thanks to the Rellich-Kondrachov compactness theorem, ! uin L2(Bg) by
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passing to a subsequence. Moreover, sirl%kunkLz(Bg) kK X upk 2 1=n, we knowu, ! O
in L2(Bg). Here we abuse notation a little bit to denoteu for the limit of u, in L?(R").
Then we know that suppu f 0Og since we can freely choode > 0.

However, sincekr u,k,2  1=n! 0,r u,! 0inL?and hence inD® which impliesu =0,
which contradicts the fact that ku,k,- =1 and u, ! uin L2 Thus, we complete the proof
of continuous embedding.

Step 2 : H} continuously embeds into H?

Furthermore, since the estimatekr uk 2 k uky. is trivial, we know that HL HZL.

Step 3 : H} compactly embeds into L2

We just need to modify the proof of Rellich-Kondrachov theorem a little bit. Suppose
kunkH&‘ C holds uniformly. In the proof of Theorem 3.1, we examine the last step. For
each > 0, we can choosR su ciently large such that kunki2(ge) which can be achieved
since

RkunkLZ(Bg) k X unkLZ(Bg) C:

Then we apply the arguments exactly like what we did inBr to obtain a " such that
ku, Unki2p) for all n. Moreover, we can select a subsequerfag g and N su ciently
large such that forj;k >N ku','” u'r']kkLz(BR) . Therefore, forj;k >N ,

kUnj unkkLZ(R“) k Unj UnkkLZ(BR) + kunj UnkkLZ(Bg)
k Ulrl]j U:]kkLZ(BR) + kulrl]j Unj kLZ(BR) + kU‘rl]k UnkkLZ(BR) + kUﬂj kLZ(B,%) + kunkkLz(BE) 5;

which completes the proof by a following diagonal argument on choosing subsequences.

Remark 12.17 From the preceding proposition,H} is obviously a Hilbert space. Suppose
u, is Cauchy inH}, thenu, ! uin H?! by the continuous embedding. Moreoverxu, is
Cauchy in L2 so it converges to som& 2 L2. However,u, ! uin D%and hencexu, ! xu
in D° sov = xu 2 L2, which completes the proof.

12.3.2 Spectrum of the operator H =+ jxj2

Now we can apply the Lax-Milgram theorem or Riesz representation theorem Bxu; v)
to obtain the following result : for anyf 2 L2 = (L?) (H%) , one can nd a weak
solution u 2 H} in the sense oB(u;u) = H;ui and hencekukHﬁ k f k.2, which gives the

boundedness of the inversk? ! HZ. Moreover, by the coercivity, there are no negative
eigenvalues forP.

On the other hand, the preceding proposition has an easy corollary that the spectrum of
H is discrete thanks to the compactness of the inverse

L2 HY L=
Now we compute the spectrum of this operator. Since we have the decomposition
P= @i @
it su ces to consider this in 1 dimension for

P= @+xX= (@ x(@+x)+1:
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WewriteP 1= (@ x)(@+x). If (@+ x)u =0, then we can explicitly solveuy = e **=2,
since it is positive, we know this corresponds to the rst eigenvalue. (See [7, Section 6.5.2]
for a similar result. Though we do not have Dirichlet boundary value, thex u 2 L? still
gives some decay at in nity.) (Though we are not in the Dirichlet boundary condition, we
also require some decay at in nity.) We write

(@+xX)P=P(@+ x)+2(@ + X);
which means that (@ + x)u corresponds to ( 2) and (@ x)u corresponds to ( + 2) if
u is an eigenfunction corresponding to. Therefore, eigenvalues are 1+ corresponding
to Up = e ***2 and ) 2

U= (@ x)e 7= pi(x)e
wherepy's are called the Hermite polynomials.
Remark 12.18 In general, suppose an operatd?® is of the formP =+ V(x). The discrete

spectrum depends on all the properties df while the essential spectrum or continuous
spectrum, only depends on properties &f at in nity.
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Green functions and an intro to unique continuation
Date: February 28, 2023

13.1 Green functions : an analogue of fundamental solutions
We consider (
u=f; in ;
u=0on @ :
Note that u(x) = RK(x y)f (y) dy, where K only depends onx vy thanks to the
translation invariance inR". However, when the setting is a bounded domain, we would only

expect to have a solution tof =  forany xed y 2 of the form K = Ky(x) = G(x;y). If

we had something like this, then we can nd
VA

ux) = G(x;y)f (y) dy:

Our rst guess would beGy(x;y) = K(x vy),then Gp= . However,Gojg 6 0, SO we
need to introduce an error

G(x;y) = Go(x;y) + R(x;y)
to force it to satisfy the boundary condition. Fory xed,
xR(X;y) =0;
R(GY)= Go(xy); X2 @:
Solving this, we know thatR( ;y) is harmonic and hence smooth as a function & which
implies Go( ;y) is smooth at the boundary thanks to the boundary conditionR(x;y) =

Go(Xx;y). Therefore, the G given here allows us to solve the boundary value problem in a
bounded domain.

De nition 13.1. We sayG is the Green function for our boundary value problem.
Proposition 13.2. The Green function satis es the symmetric conditiorG(x;y) = G(y; X).

Remark 13.3 This symmetry holds for all the self-adjoint operators with Dirichlet boundary
condition.

Proof. We denote  p to emphasize the boundary condition is Dirichlet. Thanks to the
Dirichlet boundary condition, we compute
z

pU v= u ( bV)

if we set
ux) = G(xy1); V(X) = G(X;y2); Y1;¥22
Note that this implies ,(v) = ,(u), which completes the proof.
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The symmetry property implies

G(xy) = K(x y)+ R(x;y);

where R is harmonic both inx and y and also symmetric. There is one subtlety, ag 2
approaches the boundary, the smoothness is not uniform because the boundary condition
becomes more and more singular as one puslye® the boundary. It is useful to work out
some simple examples.

Example 13.4. Set = H to be the half plane. ThenG(x;y) = K(x y) R(x;y). To
nd R(x;y), we reect y toy about @. By noticing jx yj = jXx Yj, we can choose
R(x;y) = K(x Yy ), which is smooth inH since the singularity is out of our domain.

Example 13.5. Set = B to be the unit ball. Now we look for conformal symmetries, by
which we mean 7' f(x) , which works well on harmonic functions. For conformal
symmetries, distances are multiplied by (x) but it is angle preserving. A good conformal
symmetry for the ball is the inversion, that is,jy | jyj = 1.

We comparejx yj with jx vy j for x 2 @Bby writing

2
. . y 1 Xy 1. 2
X 2= X — =1+ — 2—= = —|X .
eyl jyj? iz iyi? JYJZJ Y
Therefore,
K (x iyi ™ K (x n 3 .
Gixy)= V1Y x ¥) =K y) KGyikx y):

K(x y) K& y)+injyj; n=2
If the boundary condition is nonzero, say
u=0;in ;
u=gon@:
We extend u by O outside and denote it by u. For u, when you di erentiate once,
you see the jump at the boundary and hence get a dirac mass at the boundary. When you
di erentiate the second time, you also see the jump of normal derivative, and therefore you

get

. @u
U= Ug@ 0@’f@l@ @

where one can realizing this heuristic idea by a%cting on2D :

h(u 1), i= u dx

13.2 Introduction to potential theory
If we knew bothu and %“on @, then
Z z

W)= uy)-2K(xy)dy @9% (x;y) dy:
@ y @ y
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To justify this, we just need to iniegrate by parts to compute
u(y) K(x y)dy:

Unfortunately, given Dirichlet boundary condition or Neumann boundary condition, we can-
not know u and %“on @ at the same tizme. If we try to compute the contribution

@
= —K (X;y)dy;
Uo(X) . a(y) @ (X;y) dy

then one would notice that we cannot determine the boundary value. Instead, we can know
the jump of uy at the boundary is Uolje@ = g providedg 2 C(@). One can nd this result
stated as a corollary of [9, Trgeorem 3.22], which says that

. @, , . _1 .

y gﬁxzz . aly) @K(X,Y) dy = ég(xo)*‘ Uo(Xo);

. @, , . _ 1 .

. (qur?(z . a(y) @K(X,Y) dy =" 59(Xo) + Uo(Xo):

The operator @@K : g 7! ug is called the double layer potentialwith moment g. The
phenomenon that approaching from inside of and outside of have dierent limits is in
the same spirit of homogeneous distributions of 1, X+1i0 and . 1i0, which we introduced last
semester using approximation from upper and lower half plane.

Also, one can look at 7

h7!  h(y)K(x;y)dy;

which is called thesingle layer potentialwith moment h.

Since dm@= n 1, K(x;y)=jx Vyj?>", we know@@K (x;y) is an operator of order O
and K (x;y) is an operator of order 1.

Single and double layer potentials, which are good Fredholm operators and leads to the
solvability results of the boundary value problems. These operators can be studied by the
Calderon-Zygmund operator theory.

13.3 Introduction to unique continuation, Cauchy-Kowalevski theorem

A question is :
Can the solution to  u =0 vanish in an open set ?
The answer is no because is analytic. This is a simple example of unique continuation.
In fact, the proof only requires thatu and all its derivatives vanish at a single point. The
property is worth having a name.

De nition 13.6. If the solution u satis es the following property :
If u vanishes of in nite order at xg, thenu 0.
then we say it satis es the strong unique continuation.

Example 13.7. Given @, we (consider
u=0in ;

u=0in ( @;
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with boundary value prescribed only on , the solution is not unique since we can extend
the boundary condition to the whole boundary in various ways and solve them to obtain
di erent solutions by existence.

Example 13.8. If we pL(t an additional condition,

u=0in ;
u=0in @; £'=0in @ ;
where @ is open. By making an extension by O tou, we have u = 0 around

thanks to the following observation. By attening the boundary, we notice
u=0; (@ u=0; @Qu=0:
Then thanks to the equation, we know all the derivatives at the boundary are zero, which

means thatu vanishes on of in nite order. One can view this as another unique continu-
ation property.

This example motivates the study8of the strategy to nd analytic solutions :

2 u=0;
u=f on ;
.%u:gon :

where = @is smooth.

Supposef; g are analytic, we can solve the problem by computing all derivatives afon
using the same idea as in the preceding example, which is the Cauchy{Kowalevski theorem.
The same computation applies for the full Taylor series. If the Taylor series is convergent,
then it is a local solution.

We try to solve X
P(x;D) = c (x)D ;
iiK
what we care about is the normal direction with normal vectorN . We look at the principal
symbol X
Po(X; ) = ¢ (x)

j =K
De nition 13.9. The boundary is non-characteristic for P if Po(x;N) 6 O, that is, the
principal symbol does not vanish along the normal direction.

This non-characteristic property will take place of the condition \we can compute the
full Taylor series” in the previous baby version of Cauchy{Kowalevski theorem. This helps
to determine some derivatives by using the equation itself as what we did in the preceding
example.

Theorem 13.10 (Cauchy{Kowalevski). If @= is non-characteristic for P, then we have
local solvability.

Next time, we want to move away from the analytic class.
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Unique continuation property and Carleman estimates
Date: March 2, 2023

14.1 Unique continuation without analyticity condition, Carleman estimates
We state our main theorem today in a general manner, but we only prove for.

Theorem 14.1. LetP = @a'@+ B@+ c, wherea! is Lipschitz andb;c 2 L. If
Pu=0, andu =0 in an open set, thenu 0.

As a remark, note that the regularity assumed here is stronger than the one in the existence
theorem.

For simplicity, we only prove this whena! = | to present the main idea. Without loss
of generality, we assume = 0 in B(0;1). By making an inversionx 7! x = JX% we know
that P has a similar form in the sense that

7 oo(x) ;

where the constant can be divided from both sides. Then what we need to do is to push the
boundary of the unit ball inward.
We consider a small ball centered at a boundary point, with a cuto selecting this
ball. Then
v= (u)=1f +2r ru+ u;
where we just think of the equation as a perturbative way witff = b @u + cu . Therefore,
kaH2: ku kHZ. kf +2r ru+ Uk|_2. k f k|_2+ kUkHl(Suppr )

thanks to the elliptic regularity. Sincef = b @u+ cu, we can absortk f ki - to the left hand
side by selecting the ball su ciently small.

However, the last term is not small and di cult to manage. The very nice idea addresses
this problem is that we do not weight thing properly in the preceding estimate. We want to
add some weights which is large where we want to shaws zero (nearxg) but is small in
suppr . The idea is to add a weight which is large neaty and small in the shadow region.

To realize this, we need to choose one parameter family of weights. The idea is due to
Carleman in 1930s, then Aronszajn generalized to higher dimensions in 1950s. See [15] for
a brief history of the results on Carleman estimates. We choose an exponential weight,
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where is a large parameter. Moreover, we need the constant uniform in First, we show
Carleman estimates and then use this to prove unique continuation.

Theorem 14.2 (Carleman estimates) Suppose v =f and
zke vko+ zke r vk Cke fk.:;
where the constanC is uniform in

Remark 14.3 If you put H?2 on the left hand side, then the constant will blow up as ! 1
Heuristically, one would expect > as the coe cients for ke r 2vk 2.

Proof of unique continuation property assuming Carleman estimategssuming this rst, we
show how to invoke Carleman estimates to prove unique continuation. Fer= u , we write

u= Br u+ cu; v=Brv+cv+2rur +u B(r )u;

where the last three terms are supported in the shadow region. By applying Carleman
estimates withv = u , we obtain

2ke vk 2 + ke rvkiz. ke r vkez+ ke vkiz+ ke UKyisuppr );
where we useB;c 2 L! . Moreover, we use the fact 0 in suppr to see
ke vki2+ ke T VK.2. KuKyieuppr ) Ckuky::

Now, let !'1 , we knowv =0;rv =0in f > 0g. Otherwise, the left hand side
would tend to in nity, which violates the boundedness from above byCkuky:. Therefore,
by repeating this near each point on the boundary, we shrink the ball a little bit, which
proves Theorem 14.1.

14.2 Proof of Carleman estimate (Theorem 14.2)

Now we want to prove Carleman estimates, which is sort of one level up from elliptic
regularity. We want to choose good weights to realize the picture above and obtain the
estimates in Theorem 14.2. Note that not all weights would make the Carleman estimates to
be true after putting it into the inequality. We need to determine what functions are good
weights in Carleman estimates. Note that we want the estimates to be uniform with respect
to the exponential weight, so when we prove the estimate, we want to take the weight out
of the picture. Hence, we do a substitutiorw = e v. If v = f, then we start to derive
the equation forw by writing

e v=e f:
We compute

e@=Q@ev @ ((v=(@ eV

X 2
(@ pw=ef=g
]
For this, we need to prove the estimate

and

zkwk 2+ zKr wky2 . KgKyz:
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