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Sobolev spaces in domains 
(� Rn)

Date: January 17, 2023

1.1 Recap of Sobolev spaces in Rn

For any s 2 R, kukW s;p = khDi sukL p . The general form of Sobolev embeddings what we
ask for is

W k;p � W j;� ; k > j; q � p;

which is equivalent to
W k� j;p � Lq:

Morally speaking, you trade derivatives for integrability. Obviously, we need some restriction
relation between exponents as follows.

For p � q � p� k , we haveW k;p � Lq, wherep� k is given by a scaling lawx 7! �x which is
asked by the Gagliardo-Norenberg-Sobolev inequality

ku� kL q . ku� k _W k;p :

Explicitly, n
p � k = n

q with q = p� k , where the left hand side is the scaling index.
If n

p � k < 0, then for s > 0 satisfying n
p � k = n

1 � s, we have the Morrey's inequality

W k;p � Cs;

wheres is a non-integer andCs is the Holder space. Ifs is an integer, thenW k;p � Cs� 1;

for any  2 [0; 1). For Holder spaces,C1 � Lip � C  for  2 (0; 1).

1.2 Sobolev spaces in domains 


Before, we only discuss Sobolev spaces inRn and we now extend it to domains inRn . For
any open set 
 � Rn , @
 is the boundary of 
.

The simplest case is that 
 is half space, a more complicated one is fractal boundaries.
The most common set-up is that the boundary is locally a graph.

De�nition 1.1. We say@
 is Ck for k � 1 if @
 is a �nite union of Ck graphs.

De�nition 1.2. We de�ne W k;p(
) as a space of functions satisfyingu 2 Lp(
) and @� u 2
Lp for all j� j � k.

Note that a priori, u 2 D (
) implies @� u 2 D (
).
Another natural de�nition for Sobolev spaces in 
 is

De�nition 1.3. We sayu 2 W k;p(
) if there exists �u 2 W k;p(Rn ) such that u = �u in 
.

It turns out that these two de�nitions are equivalent. Suppose �u 2 W k;p(Rn ), then it is
obvious that k@� �ukL p (
) � k @� ukL p (Rn ) and hence the second de�nition implies the �rst one.
For the other implication, it is equivalent to the following question \Givenu 2 W k;p(
), can
we �nd an extension �u 2 W k;p(Rn )?"

First, we consider the simplest case when 
 is the half spaceH .



2 TRANSCRIBED BY NING TANG INSTRUCTOR: PROFESSOR DANIEL TATARU

1.2.1 How to extend Ck(H ) functions to Ck(Rn ) - motivation of trace inequality

For u 2 Lp(H ), we make a trivial reection to extend it to Rn by de�ning

�u(x) =

(
u(x); x 2 H;
u(x � ); x =2 H:

If u 2 C0( �H ), then this extension gives a function �u 2 C0(Rn ). However, this extension
does not mapC1( �H ) to C1(Rn ). The strategy to invent a nice extension is that we can do
a unbalanced reection

x = ( x0; xn ) 7! (x0; � kxn ) = x � :

Moreover, an a�ne combination for di�erent k's would not a�ect the mapping property
C0( �H ) ! C0(Rn ). We de�ne

�u(x) =

(
u(x); xn > 0
c1u(x0; � xn ) + c2u(x0; � 2xn ); xn < 0:

In order to match u and @nu at xn = 0, we needc1 + c2 = 1 and � c1 � 2c2 = 1, respectively.
More generally, we can �nd an extension �u 2 Ck(Rn ) by extending Ck( �H ) with an a�ne
combination of k coe�cients, which is solvable since the coe�cients is corresponded to a
Vandermonde matrix 0

@
1 1 � � � 1
...

...
...

...
(� 1)k (� 2)k � � � (� k)k

1

A :

In order to make an extension ofW k;p functions, we need to match at least the �rstk � 1
derivatives so that they do not have any jumps at the boundary in the sense that when we
di�erentiate any derivative of order � k � 1, it does not produce delta functions or other
exotic distributions so that its derivative no longer belongs toLp. For now, this idea is just
heuristic, but we will see this is rigorous if we can make sense of the trace operator.

1.2.2 Trace inequality will su�ce to show the equivalence of de�nitions of
W k;p(
)

We want to know whether the trace ofW k;p functions (restriction on the boundary) is
well-de�ned. For any u 2 W k;p(Rn ), we �nd a Cauchy sequenceun 2 W k;p \ D . We can
de�ne uj@H = lim un j@H in Lp if we can prove the following trace inequality

kukL p (@H) � k ukW k;p (H ) :

If this trace inequality holds, then we make a claim that ifu 2 W k;p(H ), v 2 W k;p(Rn n H )

and Tu = Tv, whereT is the trace operator, then the functionwk :=

(
u(x); x 2 H;
v(x); x =2 H

is

combined to be a function inW k;p(Rn ). The reason why this is true is that we can prove
that the divergence theorem holds for functions inu 2 W 1;p(H ) and � 2 C1

c (
) since we
can prove this by approximatingu by smooth functions. Then we can justifyw 2 W k;p(Rn )
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by showing that wl :=

(
@lu(x); x 2 H;
@lv(x); x =2 H

is the weak derivative (by pairing with D(Rn ))

of w by using divergence theorem inH and Rn n H for u; v, respectively.
Therefore, to prove the equivalence of the two de�nitions ofW k;p(
) for Sobolev spaces

in domains 
 in Rn , it su�ces to show the trace inequality holds.

1.3 Trace inequality

1.3.1 A revisit of a simple L2 case of trace inequality

We start with a revisit of a homework problem from last semester's course. For an hyper-
plane V � Rn , we proved

kuk2
L 2 (V ) . kukL 2 (Rn )k@ukL 2 (Rn ) ;

for all u 2 D . This holds for all u 2 H 1(Rn ) after noticing that we can use this inequality
to extend the de�nition for trace from D to H 1. This problem is quite simple since it is just
a one dimensional problem. Note that@xu2 = 2uux , wherex is the normal direction of the
hyperplaneV. This implies

u2(0) = 2
Z

x< 0
uux � 2kukL 2 (Rn )k@ukL 2 (Rn ) ;

which completes the proof. This problem is just an introduction to the trace inequality we
would like to prove for now.

1.3.2 Nonsharp Lp case by introducing a cuto� (breaking the scaling)

The simplest trace inequality we want to prove is

kukL p (@H) � k ukW 1;p (H ) :

The same strategy

u(x0; 0) =
Z 0

�1
@nu(x0; xn ) dxn

does not work anymore since the integrand is not integrable unlessp = 1. A trick is to
replace@nu by @n (�u ) with � = � (xn ) 2 C1

c such that � � 1 nearxn = 0.
We compute

u(x0; 0) = � (0)u(x0; 0) =
Z 0

�1
� 0u(x0; xn ) dxn +

Z 0

�1
�@nu(x0; xn ) dxn :

By triangle inequality in Lp and Minkowski inequality,

kTukL p (@H) �
Z 0

�1
j� 0(xn )jku(�; xn )kL p (H ) dxn +

Z 0

�1
j� j � k@nu(�; xn )kL p dxn

�k � 0kL p0kukL p
x n L p

x 0
+ k� kL p0k@nukL p

x n L p
x 0

;

where we use the support property and Holder's inequality in the last step. Therefore,

kTukL p (@H) � c1kukL p (H ) + c2k@ukL p (H ) :
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This inequality is obviously weaker than the one we obtain compared to the one in our
homework. The reason is that we introduce an arti�cial scaling by introducing the �xed� .

1.3.3 A better way to use the cuto� - introducing parameters to be optimized
at the end

To make c1; c2 two moving targets, we replace� by � (�x n ) with a scaling parameter� .
Then

c2 =
� Z

� p0
(�x n ) dxn

� 1=p0

= c� � 1=p0
; c1 = �c� � 1=p0

= c� 1=p:

By minimizing the right hand side, we get

kTukL p . k@uk1=p
L p kuk1=p0

L p :

Recall that for p = 1, we do not need to introduce� to make the integrand integrable.
Hence, we can derivekTukL 1 � k @ukL 1 , which is the sharp case in the scaling sense.

Note that kukL 1 (@H) � k ukL 1 (H ) fails but it holds for continuous functions

kukC(@H) � k ukC(H ) :

1.3.4 Lp results optimal in the sense of scaling

It is easy to observe that
T : W 1;p ! Lp

is not optimal unlessp = 1 in the sense of scaling. From a scaling perspective, the optimal
s for

T : W s;p(Rn ) ! Lp(@H)
would be s = 1=p since@H= Rn� 1, and n

p � s = n� 1
p givess = 1=p. However, it does not

hold for s = 1=p but fortunately, it almost holds and the correct statements are

T : W 1=p+ s;p ! W s;p; 8s > 0:
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Additional topics of Sobolev spaces

Date: January 19, 2023

2.1 A universal way to do extension

Last time, we noticed that the trace operator doe not work forLp functions, but we proved
that

T : W k;p(H ) ! W k� 1;p(@H):

In the proof, we need to match the �rst k derivatives on the boundary. As a result, it is
enough to take a simple symmetry

�u(x) =

(
u(x); xn > 0
u(x0; � xn ); xn < 0

to extend W 1;p functions. On the other hand, to extendW k;p, we take

�u(x) =

(
u(x); xn > 0
P L

j =1 cj u(x0; � jx n ); xn < 0:

for L � k. In order to get a systematic/uniform �u, we change it to

�u(x) =

(
u(x); xn > 0
P L

j =1 cj u(x0; � � j xn ); xn < 0:

with � j 2 (1; 2) and by taking the limit and viewing it as sort of the Riemann sum, we de�ne

�u(x) =

(
u(x); xn > 0
R

c(� )u(x0; � �x n ) d�; x n < 0;

wherec(� ) satis�es Z
c(� ) d� = 1;

Z
c(� )� j d� = 0; 8j:

If c 2 D , then bc is analytic at 0 and the relation tells usbc(0) = 1 ; @kbc(0) = i k , which
implies the convergence ofbc but it might not be Schwartz. However, we only requirec has
su�cient decay at in�nity so that we can interchange the di�erentiation and the integral.
And this would not be a problem since we can simply choosebc as a function which satis�es
the required properties at 0 and compactly supported.

2.2 Extension operator if the boundary is not at

In the setting of 
 = f xn > f (x0)g, we make a simple argument to atten the boundary
by considering

(x0; xn ) 7! (x0; z); z = xn � f (x0);

which maps 
 to H . With a slight abuse of notation, we usex for x0, y for xn . In order to
compute

@� u(x; z) = @� (u(x; y � f (x))) ;
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we need to requiref 2 Ck (i.e. @
 2 Ck) to make the extension forW k;p. However, we do
not need all this boundary regularity.

Theorem 2.1 (Stein's extension theorem). Suppose@
 is Lipschitz. Then there exists a
universal extension operator, that is, for anyk 2 Z, 1 � p < 1 , there exists a bounded
extension operatorE : W k;p(
) ! W k;p(Rn ). If 
 is bounded, thenEu has compact support.

We only sketch the proof for Stein's extension theorem. Our starting point is also

�u(x; y) =

(
u(x; y); y > f (x);
R

c(� )u(x; y + C� (f (x) � y)) d�:

However, we run into the same problem by di�erentiating using the chain rule. The idea is
to changef (x) � y into d((x; y); @
) and regularize it in a little ball around ( x; y).

2.3 W k;p
0 (
) - Approximation by D(
)

Recall that one can approximate any function inW k;p(Rn ) by functions D(Rn ) when
1 � p < 1 . Now we care about whether this would be true for domains inRn . Unfortunately,
the closure ofD(
) in W k;p(
) is not W k;p(
) provided k � 1. One way to see this is that
for u 2 W k;p(
), we have T@� u 2 Lp, j� j � k � 1. Supposeu = lim un with un 2 D (
).
Then we need to require@� u = 0 on @
 for j� j � k � 1 sinceun vanishes near@
.

De�nition 2.2.
W k;p

0 := closure of D(
) in W k;p:

Proposition 2.3. When @
 is Ck , u 2 W k;p(
) is in W k;p
0 (
) if and only if @� u = 0 in @


for j� j � k � 1.

For the proposition above, we proved one direction and the proof of the converse direction
can be found on [7]. As a corollary of the proposition above, we have the following

Proposition 2.4. u 2 W k;p
0 (
) if and only if its extension by0 is in W k;p(Rn ).

2.4 Homogeneous Sobolev spaces and Poincar�e inequality

In order to have a better scaling property, we introduced
_W k;p(Rn ) = f u 2 D 0 : @� u 2 Lp; j� j = kg

with kuk _W k;p =
P

j � j= k k@� ukL p . Sincek�k _W k;p = 0 holds for any polynomial of order� k � 1,

we need to consider the quotient space_W k;p=P� k� 1 with the same norm to make it a Banach
space.

To rectify this, we take the closure ofD(Rn ) in _W k;p. Thanks to G-N-S inequality, we
have kukL q � k uk _W k;p with n

q = n
p � k provided n

p � k > 0.

Proposition 2.5. This closure is a Banach space providednp � k > 0 ( p < n
k ).

When n
p � k < 0, then this approximation strategy does not eliminate all polynomials, but

it reduces some. So we cannot use this strategy to de�ne the homogeneous space. Instead,
we can take the quotient space as a de�nition. One can also use the completion ofD as
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a de�nition, which bene�ts the computations for nice functions. However, when we de�ne
it, we need to say ifun ! u in H s, then u is not in S 0. Instead, u is de�ned module
polynomials. In other words, we arti�cially make these with the same idea.

For negative exponents, we expectD � H s for s < 0. Thus,

_H s := f u 2 S 0 : j� jsbu(� ) 2 L2g; �
d
2

< s < 0;

where the requirements > � d
2 is to make D � _H s sincej� js 2 L2

loc. Moreover, one should
note that this space is not a quotient space.

For any bounded domain 
,

W 1;p(
) := f u 2 Lp; @u2 Lpg; _W 1;p(
) := f u 2 D 0 : @u2 Lpg

and hence _W 1;p is a quotient space modulo constants. Since@uonly determinesu modulo
constants,kukL p � kr ukL p is obviously false. How should we modify this to make it true?
One way to modify this is to subtract the average to eliminate the constants.

2.4.1 Proof by using an estimate obtained as a byproduct of Morrey's inequality

Theorem 2.6 (Poincar�e inequality) . For u 2 W 1;p,

ku � -
Z



u(x) dxkL p � kr ukL p :

Proof. In the proof of Morrey's inequality, we came up with an estimate

-
Z

B r (x)
ju(x) � u(y)j dy �

Z

B r (x)

jr u(y)j
jx � yjn� 1

dy

for any ball B centered atx. Recall that we also use this inequality to prove the endpoint
Sobolev embeddingW 1;n � BMO .

First, we prove this for the case where 
 are balls. Set �uB := -
R

B u(y) dy. Then

ju(x) � �uB r (x) j . -
Z

B r (x)
ju(x) � u(y)j dy �

Z

B r (x)

jr u(y)j
jx � yjn� 1

dy:

Note that we can also prove this inequality for anyz 2 B r (x) instead of only the center of
B r (x), namely x. We connectz with each point on @Band consider each layerS(t) = t@B
if we do a translation such thatz = 0 when proving

-
Z

B
ju(x) � u(y)j dy . B

Z

B

jr u(y)j
jx � yjn� 1

dy;

where the constant depends on diamB. Note that originally, the layersS(t) is just concentric
balls with di�erent radius, this time it becomes eclipse whent 6= 1. However, we can still
estimate ju(y) � u(0)j by integrating over the line we draw fory 2 S(r ) = rS(1). (Note
that the distance from z to each point on the boundary is not the same now, but we still
can estimate the distance by diamB, so the same idea of proof still applies.) Therefore, by
taking the Lp norm on both sides of

ju(z) � �uB j .
Z

B

jr u(y)j
jz � yjn� 1

dy; 8z 2 B;
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the result follows from the Young's convolution inequality.
Note that the same strategy can be applied to any convex domain with smooth boundary.

�

2.4.2 Proof by contradiction and size of the constant

One can refer to [7] for another proof by contradiction. This contradiction method can be
applied to many estimates of this kind. Note that this requires the use of Rellich-Kondrachov
compactness theorem, which we will discuss next lecture.

However, our preceding proof directly shows that the constant is of size diam 
. For the
sake of determining the size of the constant directly from the inequality itself, we still need
the scaling argument. Since we have

ku� (x) � (u� )
 kL p (
) � C(
) kr u� kL p (
) ; ku(x) � �u
 kL p (� 
) � C(� 
) kr ukL p (� 
)

for u� = u(�x ), one can expand the �rst one to see that�C (
) = C(� 
), which means that
the constant is of size diam 
.

2.4.3 Other Poincar�e-type inequalities

Other ways to �x our constants are as follows. We may ask \IskukL p (
) � kr ukL p (
) if
u(x0) = 0?" By Morrey's inequality, W 1;p � C0 provided p > n , so our question will be
meaningful and the answer is yes providedp > n . For simplicity, we assumex 2 
 can
connect with x0 using a simple linex = x0 + tw with w 2 Sn� 1. Take w = (0 ; xn=jxn j) as an
example. We write by Cauchy-Schwarz inequality that

ju(x)jp �
� Z y1

y0

j@xn u(x0; xn )j dxn

� p

.
Z y1

y0

j@xn u(x0; xn )jp dxn

and then integration both sides alongx0-direction, which implies kukL p (R) . 
 kDukL p (R) ,
whereR � 
 is a rectangle containing x0 with sides parallel to axes. We can alterw to get
in�nitely many Rw , covering the support ofu (if assumingu 2 D ), then by choosing a �nite
sub-covering, we complete the proof. This is roughly the main idea of the proof.

Moreover, for 
 bounded, kukL p (
) � kr ukL p (
) also holds foru 2 W 1;p
0 (
), 81 � p � 1 .

The proof can be found at [7, Chapter 5.6.1], which is basically an easy application of G-N-S
inequality, extension theorem and the fact thatL r (
) � L s(
) if r > s .

One can also expect a Poincar�e-type lemma for higher derivatives.

2.5 Compact Sobolev embeddings

De�nition 2.7. Given two Banach spacesX; Y such that X � Y, that is, for any u 2 X ,
kukY � k ukX . The embeddingX � Y is compact (X �� Y) if any bounded sequence inX
has a compact subsequence inY.

Note that X �� X if and only if X is �nite dimensional.
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2.5.1 Nonexistence of compact Sobolev embeddings in Rn - translations

We would like to know when the Sobolev embeddingsW k;p � Lq is compact. Unfortu-
nately, there are no compact Sobolev embeddings for Sobolev spaces inRn . Our �rst enemy
is the translations. Setun (x) := u(x + n) for someu 2 D � W k;p(Rn ). Since un ! 0 in
D0, if un converges to somev in Lq, then v = 0. Also, kvkL q = lim kunkL q = kukL q , which
implies that such a compact Sobolev embedding does not exist.
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Compact Sobolev embeddings (Continued)

Date: January 24, 2023

For homogeneous spaces, the embeddings_W k;p � Lq only works for n
p � k = n

q , q = p� k ,
wherep� k is called the sharp exponent. For inhomogeneous spaces, the embeddingsW k;p �
Lq works for all p � q � p� k since we naturally haveW k;p � Lp.

We would like to know when the embeddingW k;p � Lq is compact and look for enemies
to compactness, coming from symmetries.

3.1 Non-examples of compact embeddings

3.1.1 Nonexistence of compact Sobolev embeddings in Rn - scalings

Last time we discussed the �rst kind of enemies - translations and reached the conclusion
that no compact Sobolev embedding exists inRn . Now we discuss the second type of enemies
- scalings. We start with the homogeneous case. Foru 2 _W k;p, we de�ne u� (x) = � � u(�x )
and we would like to �nd � such that ku� k _W k;p = kuk _W k;p . It turns out that � = n

p � k. Note
that � is positive so if we let� n ! 0, then the graph ofun := u� n squashes. Note that

kunk _W k;p = kuk _W k;p ; kunkL q = kukL q

On the other hand,un ! 0 uniformly if we chooseu 2 D , so no compact Sobolev embedding
exists if we can spread the graph out. In other words, we again show that no compact
Sobolev embedding exists inRn .

3.1.2 Sharp Sobolev embeddings not compact - scalings as well

Another attempt is to let � ! 1 and then the graph squeezes. It is easy to seeun ! 0
uniformly everywhere away from 0. Supposeun ! ~u in Lq, we also knowun ! ~u in D0.
On the other hand, the uniformly convergence ofun tells us supp~u � f 0g provided u 2 D .
However, ~u 2 Lq, then we know ~u = 0, which implies kunkL q ! 0, which is a contradiction.

To draw the conclusion here, the sharp homogeneous Sobolev embeddings are not compact
even in bounded domains.

Now we consider the sharp inhomogeneous case. Instead of considering the_W k;p norm,
we also consider theLp norm. It turns out that

ku� n kL p = � � k
n kukL p ! 0

as � n ! 1 . However,ku� n kL q = kukL q still holds, which is a contradiction. So the sharp
(in)homogeneous Sobolev embeddings are not compact even in bounded domains. This
strategy can also help us to show that the sharp Morrey's embeddings are not compact.

3.2 Rellich-Kondrachov compactness theorem

Theorem 3.1 (Rellich - Kondrachov). Inhomogeneous non-sharp Sobolev embeddings in a
bounded domain are compact.

Proof. We only prove for the G-N-S case and one can �nd references for Morrey's case.
Step 1: Supposeun 2 W k;p, kunkW k;p � 1. We want a convergent subsequence inLq

for p � q < p� k . We know f ung is bounded inLp� k . To �nd a subsequence, we try to use
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the Arzela-Ascoli, which says that iff ung is equi-bounded and equi-continuous, then there
exists a uniform convergent subsequence.

Step 2: Extension to Rn

First, we replaceun by extensions, still denoted byun , such that kunkW k;p is still bounded
and suppun 2 B for a �xed large ball B . This saves us from worrying about the boundaries.

Step 3: un
" ! v" in L1 by passing to a subsequence (Arzela-Ascoli)

Second, to apply Arzela-Ascoli, we need to regularize the functionsun . For ' 2 D ,R
' = 1, we denote' " = " � n ' (x="). Set un

" := un � ' " .
Then we compute

kun
" kL 1 � k unkL p k' " kL p0 . "d=p0� dkunkL p ;

which is uniformly bounded inn. Similarly,

k@un" kL 1 � k unkL p k@'" kL p0 . "d=p0� d� 1kunkL p ;

which implies f un
" g1

n=1 is equi-continuous. Therefore, by Arzela-Ascoli theorem, there exists
a uniformly convergent subsequence off un

" g1
n=1 such that un

" ! v" in L1 or more speci�cally,
C0. In particular, it converges in Lq since the domain is bounded.

Step 4: un
" ! un in Lq (uniformly in n) by interpolation

For the convergenceun
" ! un , we have nonuniform convergence inW k;p. To look for

uniform convergence, we need to look atLq. For p � q < p� k , since

kun
" � unkL q � k un

" � unkh
L 1 kun

" � unk1� h
L p� k ;

it is enough to show thatun
" � un ! 0 in L1 uniformly in n sincekun

" � unkL p� k is uniformly
bounded. (This is where we use the fact thatq 6= p� k .) We compute

un
" (x) � un (x) =

Z
(un (y) � un (x)) ' " (x � y) dy =

Z
(un (x + "z) � un (x)) ' (z) dz

=
Z

B

Z 1

0
@un (x + h"z) � "z dh ' (z) dz;

where supp' � B . Then

kun
" � unkL 1 � "

Z Z

B

Z 1

0
j@un (x + h"z)jjzj dh ' (z) dz dx . "k@unkL 1 � "k@unkL p ! 0

uniformly. Therefore, kun
" � unkL q = O(") uniformly in n.

Step 5: A diagonal argument to extract a subsequence for un to converge in Lq

For any � > 0, we choose" small enough such thatkun
" � unkL q � � for all n thanks to

Step 4. Then it su�ces to show that for this �xed ", we can extract a subsequenceunk
" such

that it converges in Lq.
This is already done in Step 3. That means, there existsN such that 8j; k > N , kun j

" �
unk

" kL q � � we have

kun j � unk kL q � k un j
" � unk

" kL q + kun j
" � un j kL q + kunk � unk

" kL q � 2� + kun j
" � unk

" kL q � 3�:

Moreover, one should notice that the subsequence now depends on the" we choose. So
we need to employ a diagonal argument to conclude. To be precise, for" = 2 � k , we need to
ensure that the subsequence for" = 2 � k is a subsequence of the one we chose for" = 2 � (k� 1).
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Then we just need to extract the things in the diagonal (corresponding to" and n) and this
completes the proof. �

Remark 3.2. In particular, W 1;p(
) �� Lp(
) for all 1 < p < 1 thanks to the theorem
above.
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Elliptic Equations

Date: January 26, 2023

For a di�erential operator P(D) =
P

c� D � with constant coe�cients, D j = 1
i @j , its

symbol is given byP(� ) =
P

c� � � and we haveP(� )bu = bf .

4.1 Ellipticity of a di�erential operator P

A naive de�nition of ellipticity is that P(� ) has no real zeros.
If we consider the Fourier transformbu(� ), then those � 's in a bounded set correspond

to the smooth component of our functions because the inverse Fourier transform of anL1

function with compact support is analytic thanks to the Paley-Wiener theorem. On the
other hand, the behavior of� ! 1 tells us the singularities ofu. So one should give priority
to the singularities of the symbolu to make it have better behavior.

This motivates a better de�nition for ellipticity : We say P is elliptic if P(� ) does not
have real zeroes for large� .

Furthermore, when� is large, the highest order terms dominate inP(� ), so we de�ne the
principal symbol as follows :

De�nition 4.1. For a symbol of orderm, P(� ) =
P

j � j� m c� � � , its principal symbol is
de�ned as

Pm (� ) :=
X

j � j= m

c� � � ;

where the subscriptm is just for principal symbol not denoting the order.

A even better de�nition for ellipticity is as follows and this would be our primary notion
of ellipticity.

De�nition 4.2. We sayP is elliptic if Pm (� ) 6= 0 for � 6= 0. Equivalently,

jPm (� )j � cj� jm (4.1)

for some constantc.

Remark 4.3. The criterion (4.1) also works for variable coe�cientsPm (x; � ) =
P

cm (x)� � .

When the order m = 1, you will notice that there is no choice for a real symbol to be
elliptic unless in 1 dimension. If we focus on 2 dimensions, the operator

�@= @1 + i@2

with complex principal symbol takes a fundamental role in complex analysis. The idea to
consider in 2 dimensions is that the real part and imaginary part of the operator vanish on a
codimension 1 set, respectively, so the operator vanishes on a codimension 2 set. We require
this codimension 2 set to be the origin, so we consider 2 dimensional case.

If m = 2, we are allowed to have real-valued polynomials in higher dimensions which do
not vanish anywhere except the origin. Our main object is

� � =
X

j

D 2
j :
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Solving �@u= f is equivalent to solve the Laplace equation �u = ( @1 � i@2)f . To study
holomorphic functions (�@u= 0), it su�ces to study harmonic functions (real part/ imaginary
part of holomorphic functions).

This observation also helps us to know a bunch of harmonic polynomials by considering
Rezk for any k.

There are also elliptic operators of second order with complex symbols, which is not of so
much interest since some theories for real symbols may not apply to complex ones.

For m = 3, the polynomial is odd and if you look for real symbols, then you end up
with some restrictions on dimension. When dimensiond � 3, one need to consider complex
symbols again.

For m = 4, an important real operator is the bilaplacian � 2, which comes from the plate
equation.

Henceforth, we consider second order elliptic equations with real principal symbols. One
example is the Laplacian equationP = � � and the variable coe�cient analogue is

P = �
nX

i;j =1

aij (x)@i @j :

If aij is constant, we can assume (aij ) is symmetric and hence it can be diagonalized, so it
su�ces to consider � � for all constant coe�cients operator. However, when aij (x) are not
constants, we can only diagonalize it at one point, so the second case is of great interest.
Moreover, we can put lower order terms without a�ecting the principal symbol,

P = aij @i @j + bj @j + c:

For nonlinear elliptic equations, we may consider semilinear equations

� � u = f (u); � � u = f (u; r u);

and quasilinear equations
� aij (u)@i @j u = f (u; r u)

and fully nonlinear equations
F (u; Du; D 2u) = 0 :

4.2 L2 theory of the Laplace equation

We start from the inhomogeneous Laplace equation

� � u = f

to study the existence and uniqueness and continuous dependence in the nonlinear term.

4.2.1 Revisit of fundamental solutions of Laplacian equation

Let us recall what we know for a Laplace equation from last semester. The fundamental
solution in dimension 2 isK (x) = 1

2� ln jxj and K (x) = cn jxj2� d in dimensiond � 3. Suppose

� � u = f

in Rn , then u = K � f is a solution. If suppf is compact, thenu makes sense as a distribution
even if f is merely a distribution in E0 sinceK 2 L1

loc � D 0 for d � 3. Obviously, this is
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not the unique solution in distributions. Suppose� �~u = f , then � 2 \(u � ~u) = 0. Hence,
\(u � ~u) =

P
c� � (� ) with a �nite sum. Therefore, u � ~u is a polynomial. In other words,

the solution is unique modulo polynomials. More precisely, it is unique up to harmonic
polynomials.

Now let's start with the L2 theory for the Laplace equations.

4.2.2 Existence of u 2 _H 2 such that � � u = f 2 L2 for dimension d > 4

For f 2 L2, we study � � u = f . By taking the Fourier transform, we get

j� j2bu = bf :

If d > 4, then 1
j� j2 2 L2

loc and hence

bu =
1

j� j2
bf

is well-de�ned and thereforeu is in _H 2. An intuition for the reason why we get the dimension
restriction is that for 0 � s < d

2 , _H s consists of functions instead of pure distributions. This
can be seen from the fact thatF (1=j� js) = c=jxjd� s 2 L1 + L2 when s 2 [0; d=2).

4.2.3 Cutting o� low frequencies to discuss lower dimensions

Now we discuss lower dimensions.
bu =

1
j� j2

bf

also works if bf vanishes near 0. For arbitraryf , we cut o� the low frequencies by
bf " (� ) := bf � � j � j� " :

Then we can solve� � u" = f " and �nd a solution u" 2 _H 2(Rn ) by de�ning bu" := 1
j� j2

bf " . In
fact, u" 2 H 2(Rn ) sincek(1 + j� j2)bu" (� )kL 2 � (1 + " � 2)kf kL 2 , so we can apply the Poincar�e
inequality in the following discussion.

4.2.4 Arguments for dimension d = 4 in detail

Let us keep things simple �rst and we discuss in dimension 4. We want to look for a
compact subsequence. Since_H 1 � L4, we have _H 2 � _W 1;4 � BMO . This already tells
us that when we look at the sequenceu" , we would like to de�ne a convergence modulo
constants. In general, it does not have convergent subsequence even ifu" = u0 + c" for some
�xed u0 with a blow-up constantc" . Therefore, to de�ne a convergence, we should take away
this constant �rst.

We want to choosec" such that u" � c" converges. Setc" := �u" jB . By Poincar�e's inequality
with p = 4, we get

ku" � �u";B kL 4 (B ) � k u" k _W 1;4 � k u" k _H 2 = kf " kL 2 � k f kL 2 :

and hence in particular,u" � �u";B is uniformly bounded in L2(B ). Moreover, u" � �u";B is
uniformly bounded in H 2(B ). Therefore, by the compactness theorem, there exists some
u 2 L2 such that f u" � �u";B g ! u in L2(B ) by passing to a subsequence. (Now we consider
this for BR of any radiusR.) Furthermore, the convergence also holds inD0 sinceD is dense
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in L2. Moreover, sincef u" � �u";B R g is uniformly bounded in H 2(BR), it implies a weak-�

convergence tou in H 2(BR) by the Banach-Alaoglu theorem. (This is a problem in last
semester's HW.) Therefore, we knowu 2 H 2(BR). So as we can see, we reached a stronger
conclusion than we expected.

4.2.5 Sketch for dimension d = 2 or 3

In dimension 3, we have_H 1 � L6 and _H 2 � _W 1;6, which still allows us to apply Poincar�e's
inequality and use the same argument to conclude.

However, when we come to 2 dimensions,_H 1 � BMO , which do not allow us to have
Poincar�e's inequality anymore. We should modify the normalizationu" � �u";B R so that we
also eliminate the contribution of �rst order polynomials since we lose control of �rst order
derivatives as well.

Another generalization is that for f 2 _H � 1, we can reach the conclusion thatu 2 _H 1.
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Local properties of solutions to Laplace equation

Date: January 31, 2023

Last time, we studied� � u = f 2 L2 and provedf 2 _H s would imply u 2 _H s+2 for s < n
2

(This requirement make sure that 1
j� j2

bf (� ) de�nes a tempered distribution.)

5.1 A continuation from last time - Lp theory of Laplace equation

Theorem 5.1. If � � u = f 2 Lp for someu 2 S 0, then u 2 _W 2;p for 1 < p < 1 .

Proof. Though there is no Plancherel theorem forp 6= 2, but we still can use Fourier transform
to proceed. Since� c� u = j� j2bu = bf and � [@i @j u = � i � j bu, it su�ces to show the symbol

m(� ) = F � 1
�

� i � j

j � j2

�
mapsLp to Lp. Obviously, m(� ) 2 L1 , so m(� ) : L2 ! L2. To prove it

Lp ! Lp, we examine the Hormander-Mikhlin condition

j@�
� m(� )j � C� j� j �j � j ;

which is a su�cient condition for m : Lp ! Lp, 1 < p < 1 . Note that m(� ) = � i
j � j

� j

j � j , where

each factor is called the Riesz transformRj := D j

jD j . �

Remark 5.2. Remember that p = 1; 1 are disallowed,� � u = f 2 L1 does not imply
u 2 C1;1. The idea from Daniel is that this can be seen from the fundamental solutions and
you need to choose some nicef such that K � f is an integration with some cancellation
when varying between positive part and negative part. You only need to do the estimate
instead of computing the integral explicitly.

Note that u(x; y) = ( x2 � y2) ln( x2 + y2) in R2 satis�es � u = 8 x2 � y2

x2+ y2 2 L1 while

@2
x u = 2 ln( x2 + y2) + 2

3x4 + 6x2y2 � y4

(x2 + y2)2

is unbounded. So it means thatu =2 _W 2;1 with � u 2 L1 . From a discussion with Ryan, the
idea behind is as follows. We would like to �nd inR2 to construct a counterexample. And
ln jxj 2 BMO but not bounded, so if we want@x@yu = ln

p
x2 + y2; then by integrating in

polar coordinates, we getu = 1
2(x2 + y2) ln( x2 + y2), which is still bad. However, everything

works well if we change the plus sign to a minus sign.
In [8, Section 2.2], the authors introduceu(x; y) = ( x2 � y2) ln j ln(x2 + y2)j as an example

such that � u is continuous but u =2 C1;1. Moreover, u(x; y) = ln ln 1
x2+ y2 is given as an

example for � u 2 L1
loc with @2

x u =2 L1
loc.

5.2 Local properties - Elliptic regularity

We talk about elliptic regularity �rst. If a solution is given, we ask how regular it is.

5.2.1 Starting with u 2 L2
loc( or H s

loc, s < 0 ) and f 2 L2
loc gives u 2 H 2

loc

Suppose
� � u = f; f 2 L2

loc; u 2 L2
loc:
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Replaceu 2 L2
loc by v = �u , � 2 D such that � � 1 near x0. Of course,v 2 L2. An

application of Lebniz rule gives

� � v = � �( �u ) = � � � u � u� � � 2r ur � = �f � u� � � 2r � r u;

where the �rst two terms are in L2 and the last term is in H � 1. Hence,� � v = g 2 H � 1.
Moreover,v � � v = g1 2 H � 1. By doing a Fourier transform, we get

bv = bg1 �
1

1 + j� j2
:

Hence,v 2 H 1. In other words, u 2 H 1
loc and we get an increase by one for the order of

legitimate derivatives.
If we do the argument again, then we will end up withg 2 L2, g1 2 L2 and v 2 H 2. This

proves the following theorem.

Theorem 5.3 (Elliptic regularity) . For � � u = f , u 2 L2
loc, f 2 L2

loc, then u 2 H 2
loc.

Corollary 5.4. The theorem also works if we start withu 2 H s
loc and f 2 L2

loc with s < 0.

Proof. We just iterate the same proof and note thatu 2 H s
loc implies g 2 H s� 1 and then

v 2 H s+1 as long ass < 2. By performing an iteration, we can also conclude the same result
as above. �

5.2.2 Starting with u 2 D 0 and f 2 H s
loc (resp. C1 ) gives u 2 H s+2

loc (resp. C1 )

Now we try to make another extension. First, we consider the following problem. Suppose
u 2 D 0, can we conclude thatu 2 H s0

loc for somes0? This is a subtle question. The answer
is no since

� 0 + � 0
1 + � 00

2 + � � � + � (n)
n + � � �

will be an enemy. However,�u 2 H s0 for somes0 since for any distribution u 2 D 0, we can
write �u 2 E0 in the form of

�u =
X

j � j� k

@� g

for someg 2 C0 and an integerk which depends on�u . This is the so-called structure
theorem for compactly supported distributions, which can be found in [10, Corollary 5.4.1].
So, �u 2 H s0 for somes0 since g 2 L2

loc but keep in mind that we cannot conclude that
u 2 H s0 . The reason whyu =2 H s0

loc is that for di�erent cut-o� functions � , we will get
a di�erent exponent s0. This can be easily read from the counterexample above. (This
argument above has nothing to do with the Laplacian so far.)

Finally, the discussion above tells us we can extend the elliptic regularity theorem to :

Theorem 5.5. Supposeu 2 D 0 and f 2 H s
loc with � � u = f , then u 2 H s+2

loc .

Proof. For any � 2 D , we consider�u 2 H s0 and do the argument as in the proof of the
basic version of elliptic regularity. This leads us to�u 2 H s+2 . By choosing di�erent � , we
�nally conclude u 2 H s+2

loc . �

Corollary 5.6. Suppose� � u = f with f 2 C1 , then we haveu 2 C1 .
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Proof. This follows from the Sobolev embedding theorem and the generalized elliptic regu-
larity theorem above. �

In particular, for any harmonic function u in D, we know u 2 E(D). Here the notation
v 2 E(D) means thatv 2 C1 (D) and v can have any kind of growth near the boundary@D.

5.2.3 Harmonic functions are analytic

Theorem 5.7. If u is harmonic, thenu is analytic.

Proof. We use the fundamental solutions to prove thatu is analytic in B provided that u is
harmonic in 2B.

Step 1 : Localiztion
Choose� 2 D such that � � 1 in B and � � 0 in (2B)c. Set v = �u . For � � v = f :=

� u� � � 2r u� r � , we have suppf 2 (2B) nB. From the preceding corollary, we knowv 2 D .
Step 2 : Show v = K � f (Nontrivial!)
The second step is to show that we can solve this using the fundamental solution. We

claim v = K � f . Note that the solution is not unique, so this claim is not trivial. Since
f 2 D and K 2 L1

loc except for dimension 2, soK � f 2 E. (For dimension 2, one can use
complex analysis to prove the theorem directly. So we can assume without loss of generality
that n � 3.)

Moreover, the criterion for a smooth functions to be a tempered distribution is that the
function has at most polynomial growth near in�nity. (This is trivial to check by de�nition.)
For jxj su�ciently large and for y 2 suppf , jx � yj is away from 0 so everything is nice and
it follows directly that

�
�
�
�

Z
1

jx � yjn� 2
f (y) dy

�
�
�
� � 1=jxj; d(x; suppf ) � 1

thanks to the fact that f is compactly supported.
Hence,v = K � f on grounds the uniqueness of smooth solutions with decay at1 . This

uniqueness is easy to see sinceK � f 2 S 0; v 2 D , then � �( K � f � v) = 0 implies K � f � v
are polynomials. Moreover, since (K � f � v)(x) ! 0 asx ! 1 , we knowv = K � f .

Step 3 : Prove analyticity by noting that K is analytic away from 0
Since forx 2 B, when jx � yj > 0, K is analytic, sov(x) =

R
2B nB f (y)K (x � y) dy is an

integral of a family of functions which is analytic inx and hence the integral is analytic. �

Remark 5.8. We compareP0 = � �, P+ = 1 � � and P� = � 1� � to see the e�ect of lower
order terms.

� Global solvability :
{ P0 : use homogeneous Sobolev spaces;
{ P+ : use inhomegeneous Sobolev spaces;
{ P� : no more naive solvability, but it can be studied using more advanced theory

called Sommerfeld radiation condition.
� Elliptic regularity : Nothing changes.
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5.3 Local properties - Weak maximum principle for � � u � 0 (subharmonic)

Now we study the solution to the Laplacian equation to see how big it is pointwisely.
Suppose 
 � Rn and � � u = 0 in 
. It follows from the discussion above that u 2 C1 (
).
We need to make a stronger assumption to initiate the discussion.

Supposeu 2 C(
), we look at the maximum points for u. Set x0 to be a local maximum
for u. Then r u(x0) = 0. Since u(x) = u(x0) + r u(x0)(x � x0) + 1

2r 2u(x0)(x � x0) � (x �
x0) + o(jx � x0j3), we know r 2u(x0) � 0. Thus � u(x0) = tr r 2u(x0) � 0.

Now if we change the hypothesis to� � u < 0, then we know that there is no maximum
points inside and max
 u = max@
 u. However, we can prove the same result by only
assuming� � u � 0.

Theorem 5.9 (Weak Maximum Principle). Supposeu 2 C(
) and � � u � 0 in a compact
domain 
 , then max
 u = max@
 u.

Proof. Set u" := u + " jxj2, and then � � u" < 0. Sincejxj2 is bounded in a compact domain,
u" ! u uniformly in 
. By passing to the limit in u" , we know max
 u = max@
 u. More
precisely, we consider

max



u � max



u" = max
@


u" � max
@


u + " max
@


jxj2

and let " ! 0. �
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Strong maximum principle, mean value property

Date: February 2, 2023

We say u 2 C(
) such that � � u � 0 is a subharmonic functions. By replacingu by
� u, an easy corollary for superharmonic functions (� � u � 0), we have min
 u = min @
 u.
Later, we discuss why we need 
 to be bounded.

6.1 Weak maximum principle for general second order elliptic operator

6.1.1 Variable coe�cients with c = 0

The same proof of the maximum principle applied for variable coe�cient problems

� aij (x)@i @j u + bi @i u � 0;

where the real matrix (aij (x)) is symmetric and positive de�nite. At a maximum point,
Hess(u)(x0) = r 2u(x0) � 0, which impliesaij (x0)@i @j u(x0) � 0, since it is the trace of the
product of a positive de�nite matrix ( aij ) and a semi-negative de�nite matrixr 2u, which is
semi-negative de�nite. One can see this from diagonalizing (aij ) using an orthogonal matrix
and hence we know the sum is non-positive.

6.1.2 Only non-negative maximum taken into account when c � 0

If one want to apply the same method for

� aij @i @j u + bi @i u + cu � 0;

where we need extra conditions thatc � 0 and we only consider positive maximum so that
the last term is positive at our maximum.

6.2 Mean value property for � � implies strong maximum principle in any com-
pact domain

Now we discuss the strong maximum principle. Given a connected compact domain 
.
Suppose� � u � 0 and max
 u = max@
 u, the maximum can be achieved inside if and only
if it is constant.

The proof needs the mean value property.

6.2.1 Mean value property for harmonic or subharmonic functions

Suppose� � u = 0, then

u(x0) = -
Z

B (x0 ;r )
u dx; u(x0) = -

Z

@B(x0 ;r )
u dx:

For subharmonic functions, we have

u(x0) � -
Z

B (x0 ;r )
u dx; u(x0) � -

Z

@B(x0 ;r )
u dx:
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We prove the case for subharmonic functions by applying Green's theorem. Set 
 =
B(0; r ) = B . The Green's theorem gives

Z

B
� � u � v dx =

Z

B
u � (� � v) dx +

Z

@B

@u
@�

v � u
@v
@�

d�:

To prove the mean value property, we need a good choice forv. So we need
� � � v = � 0,
� v � 0 in B ,
� vj@B = 0, we don't want the appearance of@u

@�v in the boundary terms.
Set

v(x) = K (jxj) � K (r ); K (x) = cn jxj2� n

and then @
@�K (jxj) = c(n; r ). We write

u(0) =
Z

B
� � u � v + c

Z

@B
u d�:

By setting u � 1, we knowc = j@Bj and hence

u(0) � -
Z

@B
u d�:

By a linear change of coordinates, you can prove the mean value property foraij @i @j in some
eclipse since the linear change of a ball is a eclipse.

6.2.2 Strong maximum principle for � � in compact domains 


Now we prove the strong maximum principle. SetM = max 
 u = max@
 u. Suppose
u(x0) = max u. We chooser such that B(x0; r ) � 
. By applying mean value property,

M = u(x0) � -
Z

B
u dx � M:

This implies that u � M in B(x0; r ). Then

D = f x 2 
 : u(x) = M g

is open and closed. By connectedness,D = 
, that is, u � M in 
.

6.3 Harmonic functions in unbounded domains : Liouville's theorem, general
type maximum principle

6.3.1 Two di�erent proofs for Liouville's theorem

For harmonic functions, � u = 0 implies � @j u = 0. Hence, we can also apply the mean
value property to derivatives as

@j u(x0) = -
Z

B (x0 ;r )
@j u dx =

1
jB j

Z

@B(x0 ;r )
� j u dx:

We use this fact to prove the Liouville's theorem.

Theorem 6.1. Any bounded harmonic function inRn is constant.
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Proof. Supposejuj � M and we write

j@u(x0)j � M
1

jB j
� j@Bj =

Mn
r

! 0

as r ! 1 .
Alternative proof : Alternative proof is to use the distribution theory that we discussed

before. Since bounded functions are tempered distributions, we can apply Fourier transform
and conclude thatu is a polynomial. Then it is constant. �

6.3.2 A brief discussion on maximum principles in unbounded domains

What happens to the maximum principle if the domain is not compact. We consider a
simplest unbounded domain - half space �rst. FixH = f xn � 0g. Then u(x) = xn does not
satisfy

max
H

u � max
@H

u:

At least you need to impose some decay condition. One can refer to [3, Theorem 2.7, Theorem
2.9] for a di�erent kind of maximum principle involving unbounded domains.

A second example is an angle and you can change it by usingz = z� . For the stripe
in two dimensions, we refer to the Phragm�en{Lindel•of theorem in complex analysis for the
condition such that the maximum principle holds in a strip.

6.4 Comparison principle

One can view the maximum principle as a comparison of (super, sub) solutions with
constant functions. Note that the reason why we care about the constant functions is that
they are solutions.

Corollary 6.2 (Comparison principle). Suppose� � u � 0 and � � v � 0. If u � v on @
 ,
then u � v in 
 .

Proof. Note that � �( u � v) � 0, we know

max



(u � v) � max
@


(u � v) � 0:

�

In fact, the comparison principle also holds for

� aij @i @j + bj @j + c;

where c � 0. We just need to modify the proof with the weak maximum principle for this
general second order elliptic operator today. Note that this is in line with the di�erent
behavior of operatorsP = � � + 1 and P = � � � 1 we discussed in last lecture.

Such comparison principle can be also extended to lots of other equations.



24 TRANSCRIBED BY NING TANG INSTRUCTOR: PROFESSOR DANIEL TATARU

Elliptic boundary value problem 1 - Adjoint method, Lax-Milgram

Date: February 7, 2023

Let 
 � Rn , we discuss� � u = f in 
. The Dirichlet boundary condition is u = 0 on
boundary and the Neumann boundary condition is@u

@� = 0, which means that you cut o� all
the heat transmissions through the boundary.

7.1 Dirichlet boundary condition - uniqueness theory

If instead we look at (
� � u = f in 
 ;
u = g on @
 :

(7.1)

If one can extendg to the interior of the region to obtain av in 
 such that vj@
 = g. Then,
by letting u = v + w, we get

(
� � w = f + � v in 
 ;
w = 0 on @
 :

A good topic to discuss is the existence and uniqueness. There are two ways to develop the
uniqueness theory. The �rst one is based onL2 estimates. The other one is based on the
maximum principle.

7.1.1 Uniqueness for � � - Performing an estimate by the source term

Supposeu solves (7.1) withf = g = 0, then we compute

0 =
Z



(� � u)u dx =

Z



jr uj2 dx �

Z

@

u �

@u
@�

dx =
Z



jr uj2 dx;

which implies r u = 0. Since uj@
 = 0, we know u � 0. Note that this argument works for
Neumann boundary condition as well.

To make this computation rigorous, one needsr u 2 L2. Since uj@
 = 0, we require
u 2 H 1

0 (
). Then one could regularize u by u" 2 D (
), which satis�es u" ! u in H 1
0 . If we

redo the computation, we end up with
Z



jr u" j2 dx =

Z



f " u" dx;

which implies
kr u" k2

L 2 � k f " kL 2 ku" kL 2 :
The it follows from Poincar�e's inequality that

kr u" kL 2 � k f " kL 2 :

However, we can achieve a better result than this one. In the Cauchy Schwartz above, instead
of usingL2 for both, we do

kr u" k2
L 2 � k f " kH � 1 ku" kH 1

0
;

which implies
kr u" kL 2 � k f " kH � 1 : (7.2)
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Thus we end up with a smaller norm on the right hand side. Note that� � : H 1
0 ! H � 1, so

here we get the right space.
Sinceu" ! u in H 1

0 , we knowf " ! f in H � 1 and hence we can pass to the limit in (7.2),
which proves the uniqueness. When we become familiar with these, one usually omits the
justi�cation by smooth functions. We summarize as the following proposition.

Proposition 7.1. If u 2 H 1
0 (
) , � � u = f 2 H � 1(
) , then

kukH 1
0 (
) � k f kH � 1 (
) :

In particular, the estimates of the solution by the source term implies uniqueness.

7.1.2 Uniqueness for � � - Applying maximum principle

Another way to prove uniqueness is to use maximum principle. Supposeu satis�es (7.1)
with f = g = 0. By maximum principle, max
 u = max@
 u = 0. If we consider � u instead
of u, by minimum principle, we get min
 u = 0. Hence, u = 0. This argument works if
u 2 C(
).

If u satis�es (7.1) with g = 0. Supposef 2 L1 with jf j � M . We penalizeu by
v := u+ M

2n jx � x0j2, then � � v � 0, that is, v is sub-harmonic. Sincev � max@
 v � MR 2=2n
provided 
 � B (x0; R). Then we get

max



u � k f kL 1 R2:

Compared to theL2-based estimates we obtained above, this is imperfect in the following
sense : if one takesu 2 L1 and then takes two derivatives, then it will not end up being
in L1 , which means that the spaces for both sides of the inequality do not perfectly match
with each other. A more subtle observation is that the termR2 on the right hand side match
with the two derivatives we need to take, so it is in some sense scaling invariant.

7.1.3 Uniqueness for variable coe�cient operators in divergence form - Energy
estimates

Before we go further, we replace� � by a variable coe�cient operator
(

� @i aij (x)@j u = f in 
 ;
u = 0 on @
 :

Sinceaij (x)@j is a vector �eld, we call � @i aij (x)@j a divergence form of operators. Our con-
vention of the order of computations for� @i aij (x)@j is � @i (aij (x)@j ). If we try to reproduce
the arguments above, then we note that the only requirements foraij are aij 2 L1 and (aij )
is uniformly elliptic ( strictly positive de�nite ). Note that we do not need further regularity
on aij since the �rst thing we do in L2-based estimates is to integration by parts.

Remark 7.2. However, note that one cannot put �rst order terms into the equation if we
want to use this method to performL2-based estimates.
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7.1.4 Uniqueness for variable coe�cient operators in non-divergence form -
Maximum principle

Since the weak maximum principle also applies to operators of the form
(

� aij @i @j u + bi @i u + cu = f;
u = 0 on @
 :

Note that � aij @i @j is in non-divergence form. The requirements for the maximum principle
to hold is to require a 2 C; b2 C; c 2 C with c � 0. So, we don't needa 2 C1 compared to
the divergence form above.

Remark 7.3. In Nash-Moser theory, you still can treat in two di�erent ways by using diver-
gence form andL2-based estimates or non-divergence form and maximum principles.

7.2 Existence of solutions - L2 theory, duality argument

One kind of arguments, which manifests the idea in numerics, is to consider the di�erence
quotients � hu := u(x+ h)� u(x)

h to produce an approximate solution. By re�ning your grid, one
may get an exact solution. The arguments in [7] is largely based on this notion.

We introduce a duality argument, which can be adapted to many other problems. By
replacing � � by P, Z

� � u � v dx =
Z

u � (� � v) dx

is written as Z



Pu � v dx =

Z



u � P � v dx:

For P = aij @i @j , we haveP � = � @i @j aij and P = � @i aij @j , we haveP � = � @i aij @j . If
P = P � , we sayP is self-adjoint (as a bounded operatorH 1

0 ! H � 1).
The adjoint equation becomes

(
P � v = g;
vj@
 = 0

while the original equation is
(

Pu = f;
uj@
 = 0:

The duality relation can be written as
Z

u � g =
Z

v � f:

Note that the energy estimates for the adjoint equationkvkH 1
0

� k gkH � 1 implies
�
�
�
�

Z
ug

�
�
�
� � k vkH 1

0
kf kH � 1 � k gkH � 1 kf kH � 1 :



27

If we know the quantity
R

u � g for all g 2 H � 1, then this uniquely determinesu 2 H 1
0 . For

now, g 2 Ran(� �), a subspace of H � 1. Moreover, we have

u : Ran(� �) ! R; g 7!
Z

ug

and thus we are allowed to use Hahn-Banach theorem to extend it tou : H � 1 ! R. How-
ever, keep in mind that Hahn-Banach theorem does not give uniqueness. We only obtain
uniqueness ifRan(� �) is dense in H � 1.

The discussion above can be summarized into the following diagram.

Energy estimates forP � implies the existence forP and the energy estimates forP also
implies the existence forP � . Also, we have the other way around.

To prove the non-existence of a solution toP, one can prove by claiming that there are
no nice energy estimates forP � . This is the idea of [25] in showing that not all di�erential
operators are locally solvable.

7.3 Lax-Milgram theorem

If you have a Riemannian manifold, there is a corresponding operator called the Laplace-
Beltrami operator. It is self-adjoint with respect to the Riemannian metric. In other words,
whether the operator is self-adjoint with respect to a weight function, if we write everything
in local coordinates. Now the question is whether we can prove estimates even if our operator
is not self-adjoint.

For an operator in divergence form, a formal computation leads to
Z

Pu � u dx =
Z

(� @i aij @j + bj @j + c)u � u dx =
Z

aij @j u@i u + bj u@j u + cu2 dx;

which result in a corresponding quadratic formB : H 1
0 � H 1

0 ! R given by

B(u; v) :=
Z

aij @j u@i v + bj v@j u + cuv dx:

The important property is whether we have

B(u; u) � ckuk2
H 1

0
;

which is called the coercivity property. A good feature is that the coercivity property would
be more robust when we try to introduce some nice weights. However, an operator is self-
adjoint or not usually depends on speci�c choice of weights.

The key ingredients of Lax-Milgram theorem are the coercivity assumption plus a duality
argument, where the duality stu� is hidden in the proof of Lax-Milgram thoerem. Though
[7] does not call the argument before as a duality argument, the idea is essentially the same.

By combining these ingredients, one can prove solvability by Lax-Milgram theorem.
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Remark 7.4. An advantage of Lax-Milgram theorem is that it can handle second order elliptic
PDEs with �rst order and zeroth order terms.

For the sake of completeness, we record the results in [7, Chapter 6.2] here.

Theorem 7.5 (Lax-Milgram Theorem). Assume thatB : H � H ! R is a bilinear mapping,
for which there exist constants�; � > 0 such that

jB (u; v)j � � kukkvk; jB (u; u)j � � kuk2:

Finally, let f : H ! R be a bounded linear functional onH . Then there exists a unique
elementu 2 H such thatB(u; v) = f (v) for all v 2 H .

Proof. The proof is sketched as follows.
Step 1 : Application of Riesz representation theorem to obtain a unique elementw 2 H for each

u such that B(u; v) = hw; vi and denotew = Au.
Step 2 : A is linear and bounded : a direct estimate by de�nition.
Step 3 : A is one-to-one andR(A) is closed : it su�ces to prove � kuk2 � B (u; u) � h Au; ui �

kAukkuk.
Step 4 : R(A) = H : proof by contradiction.
Step 5 : Riesz representation theorem applied again to obtainw 2 H such that hw; vi = f (v)

for all v and hence by Step 4,Au = w for someu.
Step 6 : Uniqueness ofu.

�

Remark 7.6. If B is symmetric, then one can showB(�; �) is an inner product onH . With
symmetry of B , one can apply Riesz representation theorem to prove this directly. So the
importance of Lax-Milgram theorem is that it can apply to PDEs with �rst order terms as
we can see in a second.

We discuss the speci�cB : H 1
0 (
) � H 1

0 (
) ! R, where

B(u; v) =
Z



aij @i u@j u + bi @i uv + cuv dx:

Then one can check the following energy estimates :

jB (u; v)j � � kukH 1
0
kvkH 1

0
; � kukH 1

0
�  kuk2

L 2 + jB(u; u)j

for some�; � > 0,  � 0. One can note from the computation that ifbi = 0, then one can
take  = 0. In general, we obtain a unique weak solutionu 2 H 1

0 (
) for the boundary value
problem (

Lu + �u = f in 
 ;
u = 0 on @


for any f 2 L2.
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Elliptic boundary value problem 2 - Maximum principle approach,
Variational method

Date: February 9, 2023

Last time, we setP = � @i aij @j + bi @i + c with a corresponding bilinear form

B(u; v) =
Z



Pu � v =

Z
u � P � v =

Z
aij @i v@j u + bi @i uv + cuv:

If it satis�es the coercivity condition B(u; u) � Ckuk2
H 1

0
, then we have theL2 solvability.

An important case is whenP is self-adjoint. Technically, one can add a weight! (x) > 0 to
make an operatorP self-adjoint. In other words, we change the measure fromdx to ! (x) dx.

8.1 Maximum principle approach to prove existence - Perron's method

For maximum principle, one can think of it as aL1 theory if one wants to compare
it with the L2 theory. The setting is to write the operator in the non-divergence form :
P = � aij @i @j + bj @j + c. We assume that maximum principle holds forP. (Assume aij

symmetric, positive de�nite and c � 0.) In the following, we would like to �nd solutions to
(

Pu = f
u = 0

:

We can �nd a sub-solution u� and a super-solutionu+ . A priori, a sub-solution (in the
setting of a boundary value problem) means thatPu� � f and u� j@
 � 0. Similarly, a
super-solution means thatPu+ � f and u+ j@
 � 0.

As shown in the graph (for a one-dimensional case), if we make the function convex
enough, then by the positivity of (aij ), the Hessian will dominate the negativeness and we
get Pu� � f . Then it follows from the maximum principle that if a solution u exists,
then it is in between any sub-solution and any super-solution. Moreover, it is unique by
the maximum principle provided the existence. Therefore, it would be both the largest
sub-solution and the smallest super-solution.

Supposeu1
� ; u2

� are two sub-solutions, then we claim that maxf u1
� ; u2

� g is still a sub-
solution. We provide a heuristic argument. If we consider the one-dimensional case, then
the only place we need to take care of is the intersection pointx0 of the two sub-solutions.



30 TRANSCRIBED BY NING TANG INSTRUCTOR: PROFESSOR DANIEL TATARU

At x0 where whereu1
� ; u2

� meet with each other, since the coe�cients of@i @j is negative,
we know that (P maxf u1

� ; u2
� g)(x0) = :::+ c� x0 with c < 0. Therefore, heuristically speaking,

(P maxf u1
� ; u2

� g) can be su�ciently negative at x0. By this philosophy, the max of all sub-
solutions should be still a sub-solution. We also want to show it is a super-solution. The
idea here is to increase a sub-solution a little bit would still be a sub-solution.

By implementing this, one actually needs the solution to be at leastC2. To get rid of the
regularity issue, we reinvent the notion of sub-solutions and super-solutions in a way that
resembles the proof of the maximum principle.

De�nition 8.1. We say u� (resp. u+ ) 2 C(
) is a viscosity sub-solution (resp. super-
solution) to Pu = f 2 C(
) if the following property holds : if for any x0 2 
 and any
function ' 2 C2(
) such that u� � ' (resp. u+ � ' ) has a local max (resp. min) atx0, then

P ' (x0) � f (x0) (resp. P ' (x0) � f (x0)) :

If u is a viscosity sub-solution and a viscosity super-solution at the same time, then we
say u is a viscosity solution.

Remark 8.2. One can also add boundary condition to it as what we did in the baby version of
the de�nition of sub-solutions and super-solutions to take the boundary value into account.

Motivation of the de�nition : Supposeu� 2 C2(
) is a sub-solution and ' touches
u� from above at a single pointx0, then in the smooth setting,

u� (x0) = ' (x0); Du � (x0) = D' (x0); D 2u� (x0) � D 2' (x0);

which impliesPu� (x0) � P ' (x0). Therefore, if we adopt the baby version of the de�nition for
sub-solutions, then one needsPu� (x0) � f . Therefore, it is natural to ask that P ' (x0) � f
for all ' 2 C2 satisfying some \touching" property from above. Note that touching from
above at a single point implies thatu� � ' has a local maximum at this point, which coincides
our de�nition. This de�nition does not rely on higher regularity.

Sketch of the proof for the existence : Now in this sense, it follows directly from
the de�nition that the maximum of two sub-solutions is also a sub-solution. The next part
is to show that the largest sub-solution is also a super-solution. We prove by contradiction.
Suppose not, then there exists a' 2 C2 touching from below atx0, which satis�esP ' (x0) <
f (x0). By continuity, we know P ' (x) < f (x) in jx � x0j < � for some small� > 0. Then
by lifting ' by a su�ciently small distance " > 0, we note that the yellow line is a sub-
solution since it is the maximum of two sub-solutions, which leads to a contradiction with
the assumption that umax

� is the largest sub-solution.
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However, this argument may not be as rigorous as we want since lifting by a small number
still can ruin the property that ' + " and umax

� only intersect nearx (i.e. jx � x0j < � ). To
compensate this, we need to bend' + " down away fromx0 to make sure the contact point is
always localized. To be speci�c, we use' + " � � (x � x0)2 instead. This further modi�cation
helps us to eliminate the counterexamples as shown in the following picture.

Remark 8.3. There are some downsides of this argument. In the proof, we need to take the
maximum of a bunch of functions. However, even if we suppose' n 2 C1 , ' (x) := supn ' n (x)
is still probably not continuous. A counterexample is that one can approximate the Heaviside
function by smooth functions.

On the other hand, notice that in the proof, we only use the continuity implies that we can
obtain a maximum in a compact set for sub-solutions, so it is natural to work with upper-
semi-continuous functions for sub-solutions (resp. lower-semi-continuous functions for super-
solutions). However, if we adopt this de�nition, then a viscosity solution is continuous again
since it is not only a sub-solution but also a super-solution. We need a further modi�cation.

For a locally bounded function, we de�neu� = lim sup y! x u(y), which change anL1

function to an upper-semi-continuous function. Similarly,u� (x) = lim inf y! x u(y) can change
an L1 function to a lower-semi-continuous function. This implies the following modi�cation
of our de�nition.

De�nition 8.4. We sayu is a sub-solution ifu� is a sub-solution in the previous sense.

Then we work through the previous argument with the new de�nition for sub-solutions
(super-solutions), which would still work well and gives a solution in viscosity sense. This
completes the sketch of the proof.

Remark 8.5. Note that if u is the viscosity solution, this means that the upper-semi-continuous
function u� is a sub-solution and the lower-semi-continuous functionu� is a super-solution.
However, sub-solution is below super-solution, which impliesu� � u� at each point, and
thereforeu is continuous.
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Remark 8.6. Note that � u = 0 in the viscosity sense. does not imply �u = 0 in D0 for free.
We need some regularity theory. So the construction of a solution using maximum principle
is not the easiest way we can do.

The reason why we care about this approach is that this also works for nonlinear equations
with maximum principles, such as the fully nonlinear equation

det(D 2u) = f:

See [11] for further discussions.

All the discussions here for viscosity solutions can be found in [6].

8.2 Variational methods

Suppose we are in the self-adjoint case :

P = � @i aij @j + c

with a corresponding bilinear formB.
The idea behind the variational methods is to look for the solutionu as a minimum point

for some functional. However, in order to ensure the uniqueness of the solution, we may want
a stronger assumption that our functional only has a unique minimum. A simple observation
is that a strictly convex function has a unique minimum.

In calculus, in order to solveAx = b with A > 0 via numerical methods, we consider

min
x

1
2

Ax � x � b� x := ' (x);

where a critical point x0 satis�es

D' (x) = Ax � b:

So by trying to minimize the functional, you �nd a way to invert this matrix, which is faster
than computing the inverse of a matrix in numerical methods.

By replacing A with P, we de�ne

' (u) =
Z

1
2

Pu � u � f � u dx =
Z

1
2

b(u; u) � f � u dx;

whereb(u; u) is the integrand in B(u; u). From the previous discussion, it is natural to claim
that if P is coercive, then the solutionu is the unique minimum point for ' . To make this
precise, we bring in the Sobolev spaces. In view of the appearance ofr u in b(u; u), we set
X = H 1

0 . Then ' : X ! R is strictly convex, that is,

' (
u + v

2
) <

' (u) + ' (v)
2

; (8.1)

which follows from completing the squares

' (u) + ' (v)
2

� ' (
u + v

2
) =

1
4

B(u � v; u � v) � 0:

The equality holds if and only if u = v. The strict convexity guarantees the uniqueness of
minimum.
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Moreover, we show that' coercive away from 0 since

lim
kukX !1

' (u) = 1 :

In fact, one can prove by Poincare inequality that

j' (u)j � � kDuk2
L 2 � � (8.2)

for some�; � > 0, which is su�cient for the existence of minimizers.
In Rn , one can prove that convex functions are continuous inRn so we have a minimum.

However, in the Hilbert space, we don't know whether we have a minimum.
Luckily, we also have a notion of weak convergence in Hilbert space, that is,un * u in

X is equivalent to sayun � v ! u � v for all v 2 H . But convex functions are in general
not weakly continuous. We work on weakly semi-continuous functions to ensure that there
exists a minimum as in the modi�cation in Perron's method.

We claim that ' is weakly lower semi-continuous in the sense thatun * u implies
lim inf ' (un ) � ' (u).
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Elliptic boundary value problem 3 - Variational method, Higher regularity

Date: February 14, 2023

9.1 Variational methods (continued)

For the boundary value problem
(

� @i aij @j u = f in 
 ; f 2 H � 1(
) ;
u = 0 in @


;

we have the LagrangianL (u) =
R



1
2aij @i u@j u � fu dx . We look for minu2 H 1

0 (
) L (u).

Theorem 9.1. The Lagrangian L has a unique minimumu, which satis�es the boundary
value problem.

Proof. We start with a minimizing sequenceun 2 H 1
0 such that

lim
n!1

L (un ) = inf
u2 H 1

0

L (u):

Step 1 : Extracting a weak convergent subsequence thanks to coercivity
Then by coercivity (8.2), we know thatun is bounded inH 1

0 . Now we can �nd a weakly
convergent subsequenceun * u in H 1

0 , which by de�nition implies un � v ! u � v for all
v 2 H 1

0 . One can also interpret this as a convergence inD0. By compactness,un ! u in L2

as well.
Step 2 : Convexity of L in p implies lower semi-continuity and hence existence

and uniqueness of the minimizer
We claim that L is convex impliesL (u) � lim inf L (un ). In fact, we only need the convexity

of L, whereL(Du; u; x ) = 1
2aij @i u@j u � f (x)u. We also write L(p; z; x) = 1

2aij pi pj � f (x)z
and L (u) =

R
L(Du; u; x ) dx.

SinceL is convex inp ((8.1)),

L(hp1 + (1 � h)p2; z; x) � hL(p1; z; x) + (1 � h)L(p2; z; x); h 2 [0; 1];

where we omitz; x in the following computation for simplicity. Then we have

(1 � h) (L(hp1 + (1 � h)p2) � L(p2)) � h (L(p1) � L(hp1 + (1 � h)p2))

and hence
L(hp1 + (1 � h)p2) � L(p2)

h
�

L(p1) � L(hp1 + (1 � h)p2)
1 � h

:

Let h ! 0, we get

DpL(p2; z; x) � (p1 � p2) � L(p1; z; x) � L(p2; z; x):

In other words, this says that the tangent lineL(p2; z; x) + DpL(p2; z; x) � (p1 � p2) is be-
low L(p1; z; x). This can be also viewed as a de�nition of convexity provided thatL is
di�erentiable.

Now we replacep2 by Du, p1 by Dun , z by un then

L(Du; un ; x) + DpL(Du; un ; x) � (Du � Dun ) � L(Dun ; un ; x):



35

By weak convergence,DpL(Du; u; x ) � (Du � Dun ) ! 0 thanks to the uniform boundedness
of ku � unkH 1 and dominated convergence theorem. Moreover, a direct computation shows

j(DpL(Du; un ; x) � DpL(Du; u; x )) � (Du � Dun )j � j f (x)jjun � ujjDun � Duj;

which seems harder to estimate. Then we need to apply Egorov theorem to extract a uniform
convergent subsequenceun on G" for any " such that m(
 n G" ) < " . (Note that un ! u in
L2 implies un ! u almost everywhere by passing to a subsequence.) Therefore,

L (un ) =
Z



L(Dun ; un ; x) �

Z



L(Du; un ; x) + DpL(Du; u; x ) � (Du � Dun ) dx

+
Z

G"

(DpL(Du; un ; x) � DpL(Du; u; x )) � (Du � Dun ) dx:

Set n ! 0,
lim

n
L (un ) � L (u):

(In full generality version, one then needs to let" ! 0.) Therefore, there exists a unique
minimizer of L , where the uniqueness follows from the proof last time by strict convexity.

Step 3 : The unique minimizer u solves the equation indeed
Now we show that the minimizer solves the equation. SinceL (u + hv) � L (u) for all

v 2 D (
),

0 =
d

dh
L (u + hv)jh=0 =

Z



aij @i u@j v � f � v dx =

Z



(� @i aij @j u � f )v dx;

where in the last line,
Z



(� @i aij @j u � f )v dx = h� @i aij @j u; vi H � 1 ;H 1

0
� h f; v i

if we want to write in a rigorous way. This implies that

� @i aij @j u = f

in D0. �

Remark 9.2. � The method applies to nonlinear problems.
� Convexity can be weakened : there exists a Palais-Smale condition for a minimizing

sequence to be compact.
� If L is not di�erentiable, we can introduce the subdi�erential@L(u), which is all the slope

for which a line is under the graph : we sayp 2 @L(v) if for all u, L (u) � L (v)+ p�(u� v).
This is also connected to Legendre transform.

� When we discuss the zero Dirichlet boundary condition, it is inherited in the function
spaceH 1

0 . If we assume that there exists a minimizer inH 1, then what is the equation
solved by the minimizer?

For v 2 D (
), same computation applies � @i aij @j u = f . Now boundary condition
asks us to usev 2 C1 (
),

0 =
Z



aij @i u@j v � f � v dx =

Z



(� @i aij @j u � f )v dx +

Z

@

� j aij @i u � v d� =

Z

@

� j aij @i u � v d�;
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which implies that
� i aij @j u = 0

on @
, which is a conormal derivative. If ( aij ) = I then it is just a normal derivative.
This gives a solution to our Neumann boundary condition problem.

� For the Neumann condition,
(

� @i aij @j u = f;
� j aij @i u = 0:

Solution is not unique since we can add any constant to a solution. For existence, we
compute Z

f dx =
Z

� @i aij @j u dx = 0;

and hence solution does not exist unless
R

f = 0. Later, we will make this su�cient
and necessary. (We do not specify any regularity and only keep the argument above in
a heuristic level at this time.)

Note that for Neumann boundary condition, we cannot sayu 2 H 1
0 . Instead, the only

regularity we have isu 2 H 1. However, the dual space ofH 1 is not a good space and it
is just denoted by (H 1)0. Since the trace operatorT : H 1(
) ! H

1
2 (�), we know that

for ' 2 (H
1
2 (�)) � = H � 1

2 (�),

' � T : H 1(
) ! H
1
2 (�) ! R

is a bounded linear functional and hence' � T 2 (H 1(
)) 0. Therefore, one can view this
as the inclusion

H � 1
2 (�) � (H 1(
)) 0:

The regularity here is subtle.

9.2 Elliptic regularity

From di�erent kinds of methods, we reach the conclusionu 2 H 1
0 when f 2 H � 1.

Theorem 9.3. Given a compact domain
 . Supposef 2 H k(
) and aij 2 Ck , then u 2
H k+2 (
) for k � 0.

Remark 9.4. For k su�ciently large, f is smooth enough, then we at least need some reg-
ularity for aij for the equation to hold in classical sense even ifu is smooth. Keep in mind
that this has nothing to do with solvability. In other words, one can put lower order terms
into it and invoke the argument that we are about to discuss as long as you know that there
exists a solution.

Proof. As an example, we only prove a simple case :f 2 L2 implies u 2 H 2 \ H 1
0 . It su�ces

to prove
kukH 2 � k ukH 1 + kf kL 2 : (9.1)

Step 1 : Localization will su�ce
First note that it su�ces to prove in su�ciently small region around each point. Since 


is compact, we can �nd a �nite covering to reduce the proof. Then we only need to consider
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two cases - a ball inside the interior or a region near the boundary. We provide an argument
to precisely verify this localization argument.

Choose a cut-o� function to V, a neighbourhood ofx0. Then v = �u is well-de�ned and
we compute

Pv = P(�u ) = �Pu + C(r � r u + r 2� � u + r � � u):

Then we know
kPvkL 2 . kPukL 2 + kukH 1 :

Moreover, we knowkvkH 1 � k ukH 1 . So it su�ces to prove the inequality for v instead ofu.
Indeed, since the region is compact and hence there existsf � kgK

k=1 whose supports cover the
region, then

kukH 2 (
) .
KX

k=1

kvkkH 2 (
) .
KX

k=1

kvkkH 1 + kPvkkL 2 : . kukH 1 + ( kPukL 2 + kukH 1 );

which completes the proof.
Therefore, we just need to do localization and prove the localized inequality, that is,

proving (9.1) with u localized.
Step 2 : Proof of the localized version in the interior
For x0 2 
, we select a ball BR(x0) � 
 with R to be determined. By a linear transfor-

mation, we can assume without loss of generality thatA(x0) = I . With a slight abuse of
notation, we denoteA = ( aij ) and A = � @i aij @j . Then

kr 2ukL 2 � k � ukL 2 � k AukL 2 + k(A � �) ukL 2 � k AukL 2 + c(R)kr 2ukL 2 ;

wherec(R) ! 0 asR ! 0. So we can selectR small enough to absorb the last term to the
left hand side and get the desired bound

kuk _H 2 (B R (x0 )) = kr 2ukL 2 (B R (x0 )) . kAukL 2 (B R (x0 )) = kf kL 2 (B R (x0 )) :

It su�ces to show the case whenx0 2 @
. By introducing a cut-o� function near x0, we
replaceu by �u . Note that this does not kill the boundary condition.

Then we consider the boundary case.
Step 3 : Flatten the boundary (requiring some regularity assumptions of the

boundary)
We �nd a change of coordinates to the half ball case. Obviously, the coe�cients of the

operator would change. When making the change of coordinates, we only ensure (aij )(x0) =
I .

Remark 9.5. Can we atten A at the same time? Ifd = 1, then we can atten the real line
with metric ds2 = a(x) dx2 by choosing the arc length parametrization. Ifd = 2, then it is
overdetermined and we cannot atten it. However, we can make it conformally to identity,

A(x) 7! c(x)I;

then this is relevant to complex analysis (�@). If d � 3, the answer is no.

Step 4 : Proof of the localized estimate near the boundary when A = � �
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We �rst prove for the Laplacian case as an instructive model case for the problem. The
main idea is to distinguish the tangential derivatives and normal derivatives. With this idea
in mind, one can recover the rigorous proof.

We only consider the half ball region in the following arguments without writing out
explicitly. We have � u 2 L2, we want @2u 2 L2. For tangential derivative j � n � 1 and
any k, we compute Z

� u@2
j u dx =

X

k

Z
(@k@j u)2 dx;

where the boundary condition is zero since at least one derivative is tangential. By denoting
@0 for any tangential derivative and@for any derivative, we know from this integration by
parts that

k@0@uk2
L 2 � k � ukL 2 k@0@0ukL 2 :

Therefore,
k@0@ukL 2 � k � ukL 2 :

Then it follows from the original equation that the second order non-tangential (normal)
derivative

k@2
nuk2

L 2 � k � ukL 2 + k@0@0ukL 2 ;
which implies

k@2ukL 2 � k � ukL 2 :
Step 5 : The general case near the boundary in which (aij )(x0) = I
We write

� � v = � @i aij (x0)@j v = f � @i (aij (x) � aij (x0))@j v � bj @j v � cv;

then by denoting the �rst and zeroth order remainder byRv, we can apply the bound for �
in the previous step,

kvk _H 2 � k f kL 2 + k(aij (x) � aij (x0))@i @j vkL 2 + kRvkL 2 ;

whereRv
Note that

k(aij (x) � aij (x0))@i @j vkL 2 � k (aij (x) � aij (x0))kL 1 kvkH 2 � � kvkH 2 ;

for su�ciently small � , where we can makex � x0 small enough in our �rst step. For lower
order terms,

kRvkL 2 = k(@i aij )@j v + bj @j v + cvkL 2 � k vkH 1 :
Hence,

kvkH 2 � k vkH 1 + kf kL 2 ;
which completes the proof.

Remark 9.6. In fact, we can always obtain a stronger estimate like what we have in Step 4 for
� �. The tool is the following generalized Poincar�e-type inequality for v 2 H 2(
) ; vj@
 = 0
in a domain of size 1,

kvkL 2 + kr vkL 2 � k @2vkL 2 :
Note that v 2 H 2(
) ; vj@
 = 0 is equivalent to v 2 H 1

0 \ H 2. The proof follows from a
simple contradiction as the usual Poincar�e inequality. The only di�erence is that we would
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obtain @2v = 0 and vj@
 = 0. This leads to a contradiction since@kv = Ck and hence
v(x) =

P
Ckxk + D, which is a hyperplane of which@
 cannot be a subset.

Then By resizing it to a domain of radiusr , we know

r � 2kvkL 2 + r � 1kr vkL 2 � k @2vkL 2 ;

where we gain smallness ifr is small. The smallness helps us to absorbH 1 norms to the _H 2

norm. But this means that we have a stronger estimate whenr is su�ciently small :

kvk _H 2 . kf kL 2 :

�

9.3 More general boundary conditions

What is a good boundary condition? We discussed Dirichlet and Neumann condition just
now. We also have Robin condition@u

@� = �u , which has di�erent traces. The leading order
of Robin boundary condition is Neumann.

Now, we discuss another type of boundary condition@nu =
P

j � n� 1 aj @j u in the half plane
case.

On the boundary condition for half plane, � u = f can be written as

(@2
n + ( @0)2)u = f:

If we only take the Fourier transform in the tangential direction and still use� to denote the
(n � 1)-vector, then we get a second order ordinary di�erential equation

(@2
n � � 2)bu = bf ; (9.2)

with two fundamental solutions exn j � j ; e� xn j � j to the homogeneous equation. One grows ex-
ponentially as we move inside while the other decays exponentially. Set

bu1 = ( @n � j � j)bu; bu2 = ( @n + j� j)bu; (9.3)

then
(@n + j� j)bu1 = bf ; (@n � j � j)bu2 = bf :

For u1, by starting from a vanishing condition at in�nity and solving it towards the boundary,
we obtain u1j@
 . For u2, you want to solve from near the boundary towards the interior. To
solve this, we want to use the boundary condition to giveu2j@
 from u1j@
 .

For the zero Dirichlet boundary condition, we haveu1 = u2 on boundary thanks to (9.3).
For the zero Neumann boundary condition impliesu1 = � u2 on the boundary thanks to
(9.3). For @nu =

P
aj @j u,

@nu =
X

aj @j u (@n � ia j � j )bu = 0;

and we knowbu1 = ( @n � j � j)bu. Subtracting gives (� ia j � j + j� j)bu = bu1. If the symbol does
not vanish, then this givesbuj@
 . The boundary condition in this example is called the
Lopatinsky boundary condition.

On the other hand, the way of doing Fourier transform in (9.2) can give the Poisson
formula on the half space. See [17, Chapter 8.3].
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Elliptic boundary value problem 4 - Fredholm theory

Date: February 16, 2023

Recall the following motivating example from last time. ForP = � @i aij @j is in divergence
form, we consider the Neumann boundary value problem

(
Pu = f in 

� j aij @i u = 0 on @


:

Heuristically speaking, the obstruction of its solvability is a one-dimensional condition onf ,
which is

R
f = 0. On the other hand, the obstruction of its uniqueness is also one-dimensional

since it would be unique up to a constant.
The summary we are going to make today is : Obstructions to solvability of the bounded

linear operator P : H 1
0 (
) ! H � 1(
) are only �nite dimensional. In this context, we also

want to study the adjoint operator P � : H 1
0 (
) ! H � 1(
). A more precise version is stated

as Theorem 10.12. This brings us back to functional analysis.

10.1 Recap of functional analysis

10.1.1 Basics

SupposeX; Y are two Banach spaces withT : X ! Y bounded and linear. Then for dual
spacesX 0; Y 0, T � : Y 0 ! X 0 is also bounded and linear.

If
kerT := f x 2 X : Tx = 0g

is not empty, then the solution toTx = y will only be determined modulo elements in kerT.
The range ofT is R(T) = TX � Y while the range ofT � is R(T � ) = T � Y 0 � X 0. For

hTx; y0i = hx; T � y0i ;

if y0 2 kerT � , then y0 ? Tx and henceR(T) � ker(T � )? . Similarly, R(T � ) � ker(T)? . In
general, one can prove that

R(T) = ker( T � )? ; R(T � ) = ker( T)? : (10.1)

The closed range theorem in functional analysis asserts that the following conditions are
equivalent for any closed operatorT:

� R(T) closed;
� R(T � ) closed;
� R(T) = ker( T � )? ;
� R(T � ) = ker( T)? .

Going forward, we also useN (T) to denote kerT. SupposeR(T) is closed, then

T : X= kerT ! R(T) � Y

is bounded, injective and surjective. On the other hand, the open mapping theorem tells us
if T is surjective, then it is an open mapping, that is, the image of an open set underT is an
open set. An easy corollary is thatT : X= kerT ! R(T) is invertible with a bounded inverse.
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(Thanks to the open mapping theorem, the inverse is continuous and hence bounded.) Hence,
T � 1 : N (T � )? ! X= kerT, which is related to our solvability.

10.1.2 Fredholm operator

De�nition 10.1. We sayT is a Fredholm operator if

� N (T), N (T � ) are �nite dimensional;
� R(T), R(T � ) are closed.

Remark 10.2. In fact, the second line in the de�nition of Fredholm operator is redundant in
view of the following fact that dimY=R(T) = dim N (T � ) is �nite and hence closed. See [1,
Section 4.4].

Moreover, sinceR(T) is closed, we knowR(T) = N (T � )? and Y=R(T) is well-de�ned. In
general, for any closed subspaceK � H , H=K is isometrically isomorphismK ? since

H=K ! K ? ; h + K 7! h2 with h = h1 + h2 2 K + K ?

Therefore,

dim N (T � ) = dim Y=R(T):

The dimensions dimN (T); dim N (T � ) tell us how many obstructions we have. The �rst
one characterizes the obstructions for uniqueness while the second one characterizes the
obstructions for existence.

The outcome of today's class is the main theorem - Theorem 10.12. Let us �nish the
introduction of tools in functional analysis before proving this theorem. One of the reasons
why the Fredholm operators are introduced is that they are stable in the following sense. In
particular, for second order elliptic operator, it is stable under �rst order perturbation.

Theorem 10.3. SupposeT is Fredholm, thenT + S is also Fredholm if

� S is small (kSk is small compared tokTk);
� or S is compact.

Proof. See [1, Corollary 4.47, Theorem 4.48]. �

Remark 10.4. Note that the Fredholm theory in [7, Appendix D] is incomplete in the sense
that they only consider the caseT = I . However, in view of Atkinson's theorem, [1, Theorem
4.46], we can �nd an almost inverse, so they are equivalent.

Remark 10.5. One can think of a compact perturbation as follows. A compact perturbation
might be large in at most �nite dimensions. Note that even ifS is small, it may change the
dimension of kerT and kerT � . However, as long asS compact/small, the index ofT does
not change, which is de�ned as follows.

10.1.3 Index of an operator and invariance for Fredholm operators

De�nition 10.6. The index of T is given by

ind(T) := dim N (T) � dim N (T � ):
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For second order elliptic equations, lower order terms are compact. SupposeP = � @i aij @j +
bi @i + c, Note that bi @i + c : H 1

0 ! L2, and the inclusionL2 � H � 1 is compact thanks to the
compactness inclusion of its dualH 1

0 � L2 by Rellich-Kondrachov. (The dual operator of a
compact operator is compact.)

Moreover, note that P depends onx, if we choose another operator with the principal
part � @i aij @j , then a linear transformation

Pt = tI + (1 � t)A

can help us to turn � @i aij @j into � �, which is uniquely solvable in H 1
0 for f 2 H � 1 and

hence ind(� �) = 0. So the dimension of kernel and cokernel are the same. Note that
ind(Pt ) will keep the same because it is continuous with respect tot due to the fact that
small perturbations will not change an Fredholm operator out of the Fredholm class and
ind(Pt ) 2 Z. Note that we cannot connect any two operators together. Let's say � and
some arbitrary B , then (t + ")� + (1 � (t + "))B � (t� + (1 � t)B ) = "(� � B ), which
requires at least � � B to be bounded. However, this is natural for any two second order
elliptic operators.

Remark 10.7. The index of � � is zero follows from the atness of Rn . However, this does
not hold for general manifolds, vector bundles. The index of elliptic operators is a topological
invariant.

Example 10.8. For a matrix A : Rn ! Rm , indA = n � m.

Example 10.9. We take `2(N), the following operator T : `2 ! `2 given by

T(x1; � � � ; xn ; � � � ) = (0 ; x1; x2; � � � ):

We haveN (T) = f 0g and N (T � ) = spanf (1; 0; 0; � � � )g. Therefore,ind(T) = � 1.

Proposition 10.10. For two Fredholm operators,ind(T � S) = ind(T) + ind(S).

Proof. See [1, Theorem 4.43]. �

Proposition 10.11. When X = Y, I is a Fredholm operator and hence by perturbing by a
compact operatorK , we knowI + K is Fredholm of index0.

Proof. See [7, Appendix D Theorem 5], [1, Lemma 4.45]. �

10.2 Application of Fredholm theory - Solvability of second order elliptic oper-
ators

Theorem 10.12. SupposeP is a second order elliptic operators in divergence form, then
P; P � : H 1

0 ! H � 1 are Fredholm. In particular, N (P � ) = spanf v1; � � � ; vkg, N (P) =
spanf u1; � � � ; ulg for some �nite integer l; k and the solutions exists iff ? f v1; � � � vkg
(f 2 R(P) = N (P � )? ), while the solutions are unique modulou1; � � � ; ul .

Proof. We start with our operator P : H 1
0 ! H � 1. For the bilinear form

B(u; u) =
Z

aij @i u@j u + bi @i u + cu2 dx;
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we want a coercive propertyB(u; u) � Ckuk2
H 1

0
. To ensure that it holds, we choose� � 1

and changeP to P + � , then

B � (u; u) � ckr uk2
L 2 + � kuk2

L 2 � C
�
kukL 2 k@ukL 2 + kuk2

L 2

�
:

If � � 1, then B(u; u) � k uk2
H 1

0
. Hence,P + � is invertible thanks to the Lax-Milgram

theorem, that is, the solution exists and is unique.
Moreover,u ! �u; H 1

0 7! H � 1 is a compact perturbation, soP is a Fredholm operator. �

10.3 Application of Fredholm theory - Eigenvalues and eigenfunctions

We say� is an eigenvalue if ker(P � � ) 6= f 0g, that is, Pu = �u has nontrivial solutions.
Fredholm theory tells us any� 2 C has �nite multiplicity. And � is an eigenvalue for

P implies �� is an eigenvalue forP � since 0 = ind(P) = ind(P � � ) = dim N (P � � ) �
dim N (P � � �� ).

Where are these eigenvalues? Note that we can changeP to P + � to examine the
eigenvalues, so that we can take� su�ciently large so we have solvability. For Pu = �u ,
we haveu = �P � 1u. By Rellich-Kondrachov, P � 1 = K : L2 ! L2 is compact since both
H 1

0 � L2 and L2 ! H � 1 are compact. ThenKu = � � 1u implies � � 1 is an eigenvalue of a
compact operator.

A compact operator has �nitely many eigenvalues or countably many with an accumulating
point at 0.

Theorem 10.13. P has countably many eigenvalues� n and limn!1 j� n j = 1 .

For P = � @i aij @j + c, we know P is self-adjoint and hence eigenvalues are real with
orthogonal eigenfunctions corresponding to di�erent eigenvalues. By normalizing it, it gives
an orthonormal basis.

For the coercive case,

� kuk2
L 2 = hPu; ui = B(u; u) � Ckuk2

H 1
0

So the eigenvalues can only go to the right. Even if ourP is not coercive, we can still shift
by � to make it coercive, so that the eigenvalues are also accumulating at +1 .

The picture in the non-symmetric case, there is still a barrier for eigenvalues on the left,
but the eigenvalues can be complex numbers. However, the �rst eigenvalue is still real, which
de�nes the barrier. We will study this in detail next time.

Example 10.14. In the case ofRn , one can also apply Fredholm theory. For� � + V,
supposeV has su�cient decay at in�nity, i.e. jV j . R� � . Due to the decay property of
V , V : H 1 ! L2 is a compact operator even if we don't have compactness theorems in the
setting of Rn . Indeed, this follows from the computation

kV un � V umkL 2 . k� (un � um )kL 2 (B 2R ) + R� � M;

where kunkH 1 � M and � is a bump function with � � 1 in BR such that � (un � um ) 2
H 1

0 (B2R). Therefore, for R su�ciently large, the second term is less than", the �rst term
tends to zero asn; m ! 1 thanks to the Rellich-Kondrachov theorem in the bounded
domain B2R . On the other hand, � � � � is invertible when � < 0 by applying Fourier
transform. Thus, � � � � + V is a Fredholm operator.
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Eigenvalues and eigenfunctions (continued)

Date: February 21, 2023

For (
Pu = f; P = � @i aij @j + bj @j + c;
u = 0 on @


we study Pu = �u . By Fredholm theory, we �nd

(� k ; uk)

with lim k!1 j� k j = 1 . For � k complex, we also haveuk complex, then we can also change
bj ; c to be complex but still need to keep the principal part real.

Proposition 11.1. If coe�cients are smooth, then eigenfunctions are also smooth.

Proof. For uk 2 L2 solvesPuk = � kuk 2 L2, by elliptic regularity (Theorem 9.3), we know
uk 2 H 2. By induction, uk 2 H 2l for any l. �

11.1 Visualization of eigenvalues in the self-adjoint and non-self-adjoint case

If P is self-adjoint, then the eigenvalues are real. We considerP = � @i aij @j + c if all
coe�cients are real. If we consider the complex setting, a natural assumption is

P = � @B
j ajk @B

k + c; @B
j = @j + iB j ;

with B j and c real. Then @B
j is skew-adjoint and henceP is still self-adjoint. An example

of @B
j is the electromagnetic potential. Going forward, we use the complex inner product

Z



Pu � �v =

Z



u � Pv:

If P self-adjoint, then Pu = �u implies
Z

Pu � �u =
Z

�u � �u = � kuk2
L 2 ;

where the left hand side is equal to its adjoint, so its real, which implies the realness of� .
When P is not self-adjoint, we can write

P = Pself + Pskew;

where Pself = P + P �

2 is a second-order elliptic operator whilePskew = P � P �

2 is a �rst order
operator. For any eigenfunctionu with eigenvalue� , we compute

Pu � �u = Pself u � �u + Pskewu � �u = Re� kuk2
L 2 + i Im� kuk2

L 2 ;

where Re� ' Pself u � �u . kuk2
H 1 and

Im� ' Pskewu � �u � k uk2
L 2 + kukL 2 kr ukL 2 � k ukH 1 kukL 2 :

Moreover, if Pself is coercive, then Re� ' Pself u � �u ' k uk2
H 1 and this can be achieved by

changing the operatorP to P + � for some su�ciently large � as what we did in the proof
of Theorem 10.12. By normalizingkukL 2 = 1, we get

Re� ' k uk2
H 1 jIm� j � k ukH 1 :
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Therefore, jIm� j �
p

Re� + � for some su�ciently large � which makes the approximation
Pself u� �u ' k uk2

H 1 work. So the spectrum picture in the non-self-adjoint case can be sketched
as follows.

11.2 Variational characterization of eigenvalues and eigenfunctions

11.2.1 Orthonormal eigenfunctions of a symmetric second order elliptic opera-
tor form an orthonormal basis

Proposition 11.2. SupposeP is symmetric, then theL2 normalized eigenfunctions form
an orthonormal basis forL2.

Proof. For P : H 1
0 ! H � 1, we assume it is coercive (if not, we considerP + � ). Then this

implies the existence ofP � 1 : H � 1 ! H 1
0 , which follows from the Lax-Milgram theorem.

Furthermore, we considerL2 eigenfunctions (This is natural thanks to Proposition 11.1) and
this restricts the consideration to the compact operatorK := P � 1 : L2 ! L2.

Supposef � j g ! 0; uj are eigenvalues and orthonormal eigenfunctions forK . Set V :=
spanL 2 f uj g.

Since K is symmetric and compact, it follows from the spectrum theorem for compact
operators ([23, Theorem 5.6]) thatf uj g form an orthonormal basis ifR(K ) is dense. Then it

su�ces to show N (K ) = N (K � ) = R(K )
?

is empty. This is trivial since K is invertible. �

11.2.2 Variational characterization of the principle value

Now we still stick to the symmetric case with real coe�cients so that the preceding propo-
sition can be applied to obtain an orthonormal basisf uj g for L2 which consists of eigenfunc-
tions. For u 2 L2, u =

P
cj uj , then kuk2

L 2 =
P

c2
j , wherecj = u � uj . Then

Pu � u =
X

cj uj �
X

� j cj uj =
X

� j c2
j

and kuk2
H 1 '

P
(� j + � )c2

j and kuk2
H 2 '

P
(� j + � )2c2

j and so on.

Proposition 11.3. For P symmetric with real coe�cients, the �rst eigenvalue satis�es

� 0 = inf
u2 H 1

0

B(u; u)
kuk2

L 2

= inf
u2 H 1

0 ;kukL 2 =1
B(u; u);

which is called the variational interpretation.
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Proof. We keep using the notations above and supposeP is coercive by adding a� if needed.
Note that

B(u; u) = Pu � u =
X

� j c2
j � � 0

X
c2

j = � 0kuk2
L 2

with equality if and only if Pu = � 0u.
Now it su�ces to show that if u 2 H 1

0 with kukL 2 = 1, then B(u; u) = � 0 implies
Pu = � 0u. (It is actually an equivalence relation but the other implication is trivial.) Recall
that u =

P
cj uj with cj = u � uj . SincekukL 2 = 1, we know

P
j c2

j = 1. Hence,
X

j

c2
j � 0 = � 0 = B(u; u) =

X

j

c2
j hPuj ; uj i =

X

j

c2
j � j :

Therefore,cj = 0 if � j > � 0. Since� 0 has �nite multiplicity, u =
P

j cj uj is a �nite sum and
it satis�es Pu = � 0u, which completes the proof. �

Remark 11.4. Moreover, if c0 = 0, then we can �nd � 1 by using

� 1 = inf
u2 H 1

0 ;u? u0

B(u; u)
kuk2

L 2

:

This is kind of related to Lagrange multiplier.

By a side product of homework,@j juj = sgn(u)@j u almost everywhere foru 2 H 1. There-
fore, B(juj; juj) = B(u; u). If u is an eigenfunction, thenjuj is an eigenfunction and hence
there exists a non-negative eigenfunction.

If there is another eigenfunction corresponding to� 0, one can make a linear combination
to let it have a zero, but this is impossible.

Proposition 11.5. With the same assumption as in the preceding proposition,� 0 is a simple
eigenvalue andu0 > 0.

Proof. We have already derived thatu0 is non-negative. Thanks to the Harnack's principle
which will be introduced in the remaining lectures, we knowu0 is strictly positive unlessu0 �
0. (One needs to use the full generality of Harnack's principle when the operator has zeroth
order term. See [11, Chapter 8].) If there exists another eigenfunction ~u0 corresponding with
� 0 and linearly independent withu0, then we can arrange thatj~u0 � cu0j is not smooth for
somec. However, notice that ~u0 � cu0 is still in H 1

0 and an eigenfunction corresponding to� 0.
This contradicts with the fact that eigenfunctions are smooth thanks to Proposition 11.1.�

Remark 11.6. Note that all the preceding propositions in this subsection combines to form
an alternative proof of [7, Section 6.5.1, Theorem 2].

Theorem 11.7. If P is not formally self-adjoint, then there exists a �rst eigenvalue� 0 2 R
and simple withu0 > 0 and for any other� j , we haveRe� j > � 0.

One can �nd a proof in [7, Section 6.5.2], which shows the variational principle in this
setting by using maximum principle. The idea is similar to the one presented above.
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Examples of eigenvalue problem

Date: February 23, 2023

Today we do a wrap-up for the eigenvalue problems by providing some examples.

12.1 Basic examples with Dirichlet or periodic boundary condition

Example 12.1. In 1 dimension, we considerP = � @2
x in [0; L] with Dirichlet boundary

condition. The eigenfunctions and eigenvalues are

uk = sin
�

�k
L

x
�

; � k =
�

�k
L

� 2

for k � 1. If we choose Neumann boundary condition instead, then

uk = cos
�

�k
L

x
�

; � k =
�

�k
L

� 2

for k � 0. This means that we have an obstruction to solve the Neumann problems, which
are the constant functions, that is, we can only solve uniquely up to constants for Neumann
problems. Moreover, to ensure the existence of solutions, the source terms also need to be
orthogonal to constant functions thanks to Fredholm theory (Theorem 10.12).n

Example 12.2. If we choose a periodic boundary conditionu(0) = u(L), @xu(0) = @xu(L),
then u0 = 1; � 0 = 0 is the �rst eigenvalue. One can view [0; 1] as S1 when the boundary
condition is periodic. We have

u�
k = e� i 2�k

L x ; � k =
�

2�k
L

� 2

for k � 1. Note that in this example, from the second eigenvalue, we start to have multi-
plicity.

Example 12.3. For the operator P = � @xa@x + c in I , with Dirichlet boundary condition,
it has a sequence of simple eigenvalues� 0 < � 1 < � � � < � k < � � � , which is studied by using
the Sturm-Liouville theory. We omit the proof though it is not hard. It tells us uk can only
change signs exactlyk times, which is called Sturm oscillation theory.

Example 12.4. For P = � � with Dirichlet boundary condition in [0 ; � ] � [0; � ], we have

un;m = sin nx sinmy; n; m � 1; � n;m = n2 + m2:

Note that we only need to consider the eigenfunctions in the form of separation of variables
since the operator� � can be written into the sum of two operators commuting with each
other, i.e. [@2

x ; @2
y ] = 0. This implies that they share common basis with� � at least in a

heuristic level. (See [24, Problem 4.5] for a general statement of this fact.)

Example 12.5. For P = � � in [0 ; 2� ] � [0; 2� ] with periodic boundary condition in x; y,
then we have

un;m = einx eimy ; n; m 2 Z; � n;m = n2 + m2;
which is a problem on torus.
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12.2 Laplacian on n-sphere

12.2.1 Laplacian with boundary conditions, Bessel functions

Example 12.6. For D = fj xj � 1g � R2, we considerP = � � with Dirichlet boundary
condition. By writing it in ( r; � ), we haveP = � @2

r � 1
r @r � 1

r 2 @2
� , where@2

� is the Laplacian
on the circle. Note that [� � ; � � � ] = 0, which implies they share common basis in view of
linear algebra of matrices. So it's natural to consider eigenfunctions in the form of separation
of variables. Since@r ; @� commute, we know the eigenfunctions are a product of functions in
� and functions in r , namely u(r; � ) = v(r )w(� ). From before, wk = eik� . By plugging this
back into the equation, we know

�
� @2

r �
1
r

@r +
k2

r 2

�
v = �v;

which has variable coe�cients and we need to solve it for eachk. Unfortunately, there are
no elementary solutions to this so that we need to introduce some special functions to solve
this and what we obtain are called Bessel functions. Though it is impossible to write down
the exact formula, we can obtain its asymptotic behavior. Moreover, by scaling, we can solve
the equation for all � given solutions when� = 1, where � is called the scaling parameter.
Suppose we �xk and �nd a solution for � = 1, which behaves like the following graph.

By noticing that the Dirichlet boundary condition for the eigenvalue problem requiresv(1) =
0, so the choice of� k = j k are the speci�c scaling parameter such that the scaling moves the
k-th zero to 1.

In the same spirit, we can solve the Neumann problem by looking for the speci�c scaling
parameter such that the scaling makesv0(1) = 0.

Example 12.7. For D = fj xj � 1g � Rn , we consider

P = � � = � @2
r �

n � 1
r

@r �
1
r 2

� Sn � 1

with Dirichlet boundary condition, where the � Sn � 1 is the Laplace-Beltrami operator onSn� 1

as a Riemannian manifold. In the previous example, we knew the spectrum of the Laplacian
on the circle so that this reduction helps us to �nd the spectrum of� �. However, we do
not know the eigenvalues of �Sn � 1 yet. If we do a separation of variablesu(r; ! ) = v(r )w(! )
with r 2 [0; 1], ! 2 Sn� 1, then we have

� � Sn � 1 w = �w;
�

� @2
r �

n � 1
r

@r +
�
r 2

�
v = �v:

We still get some Bessel functions if we kneww is an eigenfunction of� � Sn � 1 corresponding
to � . Though we do not even write out the exact formula for� � Sn � 1 , we can obtain the
spectrum by a trick introduced in the following example.
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12.2.2 Spectrum of Laplacian on the sphere

Example 12.8. For the Laplacian P = � � Sn � 1 on Sn� 1, if w is an eigenfunction, that is,
� � w = �w , with w a function living on the sphere. The idea is to extendw to Rn by
homogeneity. Forx = r! 2 Rn , we can extendw to Rn by setting

u(x) = r � w(! ):

We want to choose� so that u is harmonic. We compute

� u = � (� � 1)r � � 2w(! ) + ( n � 1)�r � � 2w(! ) + ( � � )r � � 2w(! );

which conveniently tells us� should satisfy� = � (� + n � 2), which is a quadratic equation
for � . Since the growth ofu at in�nity is at most as a polynomial and is smooth away from
0, we knowu 2 S 0. Or to be more precise, one can apply [13, Theorem 7.1.18] directly
to know u 2 S 0. By applying Fourier transform to � � u = 0, we know u can only be a
harmonic polynomial, which implies that� is a natural number. (We can also argue by the
fact that harmonic functions are smooth.)

This in turn gives the eigenvalues of the spherical Laplacian. Given a harmonic polynomial
u of degree� 2 N, ujSn � 1 is an eigenfunction of� � Sn � 1 corresponding to� = � (� + n � 2).
Therefore, we proved Theorem 12.9.

Theorem 12.9. The spectrum of� � Sn � 1 is given by

� (� � Sn � 1 ) = f � (� + n � 2) : � 2 Ng:

Remark 12.10. Though the spectrum is characterized by only one parameter for any dimen-
sion, it has very high multiplicities, which corresponds to how many independent harmonic
polynomials you can �nd of degree� and is roughly likeO(� n� 1).

Remark 12.11. See [12] for details of spherical harmonics and a decomposition ofL2(Sn� 1). In
speci�c, see [12, De�nition, Page 67] for the reason why we can extend this by homogeneity.

Remark 12.12. Note that the discreteness of the spectrum follows from the compactness of
the sphere. We can prove Rellich-Kondrachov compactness theorem for the sphere, which
is identical to the one on a connected and bounded domain. This can be applied to derive
the compactness of inverse operators like what we did in the proof of Proposition 11.2 and
hence implies the discreteness of the spectrum.

12.2.3 Examples with non-compact domains

Now we consider an example with non-compact domains.

Example 12.13. If � � u = �u in Rn , then by Fourier transform, (� 2 � � )bu = 0. Thus,

suppbu � fj � j =
p

� g;

which implies u cannot be in L2 since the sphere is of measure zero. Therefore,� � only
admits generalized eigenvalues� � = � 2 with generalized eigenfunctionsu� = eix� .

Remark 12.14. Suppose
u = F � 1 (g(� )� S1 ) :
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For instance, in 2 dimensions, we write

u(x) =
Z

! 2 S1
g(! )eix �! =

Z
g(cos�; sin� )ei (x1 cos� + x2 sin � ) d�;

where ! = (cos �; sin� ), which can be analyzed by the idea of stationary phase method by

viewing � � j xj and hence has
1

p
jxj

decay. (In fact, due to the rotational symmetry, one

can assumex1 = jxj and x2 = 0.) Then it is natural to think of stationary phase.
In general dimensions, one can show thatu is smooth with jxj � (n� 1)=2 decay by using

a general stationary phase method. Recall that when we implement the stationary phase
method, we need to consider the number of nonzero eigenvalues of the Hessian, which cor-
responds to the non-vanishing curvature of the sphere. (If one represent the ball locally as
a graph of a functionF , then the the number of nonzero eigenvalues of the Hessian, which
corresponds to the non-vanishing curvature of the sphere.) ForSn� 1, we know it has exactly
n � 1 non-vanishing curvature, which givesjxj � (n� 1)=2 decay. The point is, these generalized
eigenfunctions are almostL2 with a lack of 1=2 decay.

The conclusion for this example is� (� �) = R+ , which is a continuous spectrum.

Remark 12.15. For some� �+ V with V periodic, you may see band structure in its spectrum,
that is, combination of continuous and discrete spectrum.

12.3 Hermite operator (Harmonic Oscillator)

For � � on Rn , the reason why we do not have compact theorems is due to the translations.
To kill the possibility of translation, we add a potential to it.

In Rn , we consider theHermite operator � � + jxj2 := H , which corresponds to

B(u; u) =
Z

Pu � u =
Z

jr uj2 + jxuj2 dx := kuk2
H 1

H
:

12.3.1 Compactness embedding H 1
H �� L2

Heuristically, given a function u 2 H 1
H , if we consider the enemy for Rellich-Kondrachov

produced by translation as in Section 2.5, then we would notice that when the transla-
tional parameter n is large enough, thex in the term jxuj2 kicks in, which makes the norm
su�ciently large. Therefore, we would expect that we have compact embeddings.

In fact, the same kind of proof by contradiction for Poincar�e's inequality in [7] applies.

Proposition 12.16. We have the compact embeddingH 1
H � L2.

Proof. Step 1 : H 1
H continuously embeds into L2

First, we showH 1
H � L2 is a continuous embedding. It su�ces to show

kukL 2 � CkukH 1
H

:

Suppose not by contradiction, then there existsf ung such that

kunkL 2 � nkunkH 1
H

:

Without loss of generality, we assumekunkL 2 = 1. Sincekr unkL 2 � 1=n, we knowkunkH 1 �
2. Therefore, thanks to the Rellich-Kondrachov compactness theorem,un ! u in L2(BR) by
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passing to a subsequence. Moreover, sinceRkunkL 2 (B c
R ) � k x � unkL 2 � 1=n, we knowun ! 0

in L2(B c
R). Here we abuse notation a little bit to denoteu for the limit of un in L2(Rn ).

Then we know that suppu � f 0g since we can freely chooseR > 0.
However, sincekr unkL 2 � 1=n ! 0, r un ! 0 in L2 and hence inD0, which impliesu = 0,

which contradicts the fact that kunkL 2 = 1 and un ! u in L2. Thus, we complete the proof
of continuous embedding.

Step 2 : H 1
H continuously embeds into H 1

Furthermore, since the estimatekr ukL 2 � k ukH 1
H

is trivial, we know that H 1
H � H 1.

Step 3 : H 1
H compactly embeds into L2

We just need to modify the proof of Rellich-Kondrachov theorem a little bit. Suppose
kunkH 1

H
� C holds uniformly. In the proof of Theorem 3.1, we examine the last step. For

each� > 0, we can chooseR su�ciently large such that kunkL 2 (B c
R ) � � which can be achieved

since
RkunkL 2 (B c

R ) � k x � unkL 2 (B c
R ) � C:

Then we apply the arguments exactly like what we did inBR to obtain a " such that
ku"

n � unkL 2 (B R ) � � for all n. Moreover, we can select a subsequencef nj g and N su�ciently
large such that for j; k > N , ku"

n j
� u"

nk
kL 2 (B R ) � � . Therefore, forj; k > N ,

kun j � unk kL 2 (Rn ) � k un j � unk kL 2 (B R ) + kun j � unk kL 2 (B c
R )

�k u"
n j

� u"
nk

kL 2 (B R ) + ku"
n j

� un j kL 2 (B R ) + ku"
nk

� unk kL 2 (B R ) + kun j kL 2 (B c
R ) + kunk kL 2 (B c

R ) � 5�;

which completes the proof by a following diagonal argument on choosing subsequences.�

Remark 12.17. From the preceding proposition,H 1
H is obviously a Hilbert space. Suppose

un is Cauchy in H 1
H , then un ! u in H 1 by the continuous embedding. Moreover,xun is

Cauchy in L2 so it converges to somev 2 L2. However,un ! u in D0 and hencexun ! xu
in D0, so v = xu 2 L2, which completes the proof.

12.3.2 Spectrum of the operator H = � � + jxj2

Now we can apply the Lax-Milgram theorem or Riesz representation theorem toB(u; v)
to obtain the following result : for any f 2 L2 = ( L2)� � (H 1

H )� , one can �nd a weak
solution u 2 H 1

H in the sense ofB(u; u) = hf; u i and hencekukH 1
H

� k f kL 2 , which gives the
boundedness of the inverseL2 ! H 1

H . Moreover, by the coercivity, there are no negative
eigenvalues forP.

On the other hand, the preceding proposition has an easy corollary that the spectrum of
H is discrete thanks to the compactness of the inverse

L2 ! H 1
H � L2:

Now we compute the spectrum of this operator. Since we have the decomposition

P = � @2
1 + x2

1 � @2
2 + x2

2 � � � � ;

it su�ces to consider this in 1 dimension for

P = � @2
x + x2 = � (@x � x)(@x + x) + 1 :
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We write P � 1 = � (@x � x)(@x + x). If ( @x + x)u = 0, then we can explicitly solveu0 = e� x2=2,
since it is positive, we know this corresponds to the �rst eigenvalue. (See [7, Section 6.5.2]
for a similar result. Though we do not have Dirichlet boundary value, thex � u 2 L2 still
gives some decay at in�nity.) (Though we are not in the Dirichlet boundary condition, we
also require some decay at in�nity.) We write

(@x + x)P = P(@x + x) + 2( @x + x);

which means that (@x + x)u corresponds to (� � 2) and (@x � x)u corresponds to (� + 2) if
u is an eigenfunction corresponding to� . Therefore, eigenvalues are 1 + 2N� corresponding
to u0 = e� x2=2 and

uk = ( @x � x)ke� x2=2 = pk(x)e� x2=2;
wherepk 's are called the Hermite polynomials.

Remark 12.18. In general, suppose an operatorP is of the formP = � �+ V(x). The discrete
spectrum depends on all the properties ofV while the essential spectrum or continuous
spectrum, only depends on properties ofV at in�nity.
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Green functions and an intro to unique continuation

Date: February 28, 2023

13.1 Green functions : an analogue of fundamental solutions

We consider (
� � u = f; in 
 ;
u = 0 on @
 :

Note that u(x) =
R

K (x � y)f (y) dy, where K only depends onx � y thanks to the
translation invariance in Rn . However, when the setting is a bounded domain, we would only
expect to have a solution tof = � y for any �xed y 2 
 of the form K = K y(x) = G(x; y). If
we had something like this, then we can �nd

u(x) =
Z

G(x; y)f (y) dy:

Our �rst guess would beG0(x; y) = K (x � y), then � G0 = � x . However,G0j@
 6= 0, so we
need to introduce an error

G(x; y) = G0(x; y) + R(x; y)

to force it to satisfy the boundary condition. Fory �xed,
(

� � xR(x; y) = 0 ;
R(x; y) = � G0(x; y); x 2 @
 :

Solving this, we know thatR(�; y) is harmonic and hence smooth as a function ofx, which
implies G0(�; y) is smooth at the boundary thanks to the boundary conditionR(x; y) =
� G0(x; y). Therefore, theG given here allows us to solve the boundary value problem in a
bounded domain.

De�nition 13.1. We sayG is the Green function for our boundary value problem.

Proposition 13.2. The Green function satis�es the symmetric conditionG(x; y) = G(y; x).

Remark 13.3. This symmetry holds for all the self-adjoint operators with Dirichlet boundary
condition.

Proof. We denote � � D to emphasize the boundary condition is Dirichlet. Thanks to the
Dirichlet boundary condition, we compute

Z



� � D u � v =

Z



u � (� � D v)

if we set
u(x) = G(x; y1); v(x) = G(x; y2); y1; y2 2 
 :

Note that this implies � y1 (v) = � y2 (u), which completes the proof. �
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The symmetry property implies

G(x; y) = K (x � y) + R(x; y);

whereR is harmonic both in x and y and also symmetric. There is one subtlety, asy 2 

approaches the boundary, the smoothness is not uniform because the boundary condition
becomes more and more singular as one pushesy to the boundary. It is useful to work out
some simple examples.

Example 13.4. Set 
 = H to be the half plane. ThenG(x; y) = K (x � y) � R(x; y). To
�nd R(x; y), we reect y to y� about @H. By noticing jx � y� j = jx � yj, we can choose
R(x; y) = K (x � y� ), which is smooth inH since the singularity is out of our domain.

Example 13.5. Set 
 = B to be the unit ball. Now we look for conformal symmetries, by
which we mean� � 7! � f (x) � �, which works well on harmonic functions. For conformal
symmetries, distances are multiplied byf (x) but it is angle preserving. A good conformal
symmetry for the ball is the inversion, that is,jy� j � j yj = 1.

We comparejx � yj with jx � y� j for x 2 @Bby writing

jx � y� j2 =

�
�
�
�x �

y
jyj2

�
�
�
�

2

= 1 +
1

jyj2
� 2

x � y
jyj2

=
1

jyj2
jx � yj2:

Therefore,

G(x; y) =

(
K (x � y) � j yj � (n� 2)K (x � y� ); n � 3;
K (x � y) � K (x � y� ) + ln jyj; n = 2

= K (x � y) � K (jyj(x � y� )) :

If the boundary condition is nonzero, say
(

� � u = 0; in 
 ;
u = g on @
 :

We extend u by 0 outside 
 and denote it by �u. For �u, when you di�erentiate once,
you see the jump at the boundary and hence get a dirac mass at the boundary. When you
di�erentiate the second time, you also see the jump of normal derivative, and therefore you
get

� �� u = uj@
 � � 0
@
 +

@u
@�

j@
 � � @
 ;

where one can realizing this heuristic idea by acting on� 2 D :

h�(� u � 1
 ); � i =
Z



u� � dx:

13.2 Introduction to potential theory

If we knew both u and @u
@� on @
, then

�u(x) =
Z

@

u(y)

@
@�y

K (x; y) dy �
Z

@


@u
@�y

K (x; y) dy:
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To justify this, we just need to integrate by parts to compute
Z

� � u(y) � K (x � y) dy:

Unfortunately, given Dirichlet boundary condition or Neumann boundary condition, we can-
not know u and @u

@� on @
 at the same time. If we try to compute the contribution

u0(x) = �
Z

@

g(y) �

@
@�

K (x; y) dy;

then one would notice that we cannot determine the boundary value. Instead, we can know
the jump of u0 at the boundary is [u0]j@
 = g provided g 2 C(@
). One can �nd this result
stated as a corollary of [9, Theorem 3.22], which says that

lim
x! @
 ;x2 


Z

@

g(y) �

@
@�

K (x; y) dy =
1
2

g(x0) + u0(x0);

lim
x! @
 ;x2 
 c

Z

@

g(y) �

@
@�

K (x; y) dy = �
1
2

g(x0) + u0(x0):

The operator � @
@�K : g 7! u0 is called the double layer potentialwith moment g. The

phenomenon that approaching from inside of 
 and outside of 
 have di�erent limits is in
the same spirit of homogeneous distributions of� 1, 1

x+ i 0 and 1
x� i 0 , which we introduced last

semester using approximation from upper and lower half plane.
Also, one can look at

h 7!
Z

h(y)K (x; y) dy;

which is called thesingle layer potentialwith moment h.
Since dim@
 = n � 1, K (x; y) = jx � yj2� n , we know @

@�K (x; y) is an operator of order 0
and K (x; y) is an operator of order� 1.

Single and double layer potentials, which are good Fredholm operators and leads to the
solvability results of the boundary value problems. These operators can be studied by the
Calderon-Zygmund operator theory.

13.3 Introduction to unique continuation, Cauchy-Kowalevski theorem

A question is :
Can the solution to � � u = 0 vanish in an open set ?

The answer is no becauseu is analytic. This is a simple example of unique continuation.
In fact, the proof only requires that u and all its derivatives vanish at a single point. The
property is worth having a name.

De�nition 13.6. If the solution u satis�es the following property :
If u vanishes of in�nite order at x0, then u � 0.

then we say it satis�es the strong unique continuation.

Example 13.7. Given � � @
, we consider
(

� � u = 0 in 
 ;
u = 0 in � ( @
 ;
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with boundary value prescribed only on �, the solution is not unique since we can extend
the boundary condition to the whole boundary in various ways and solve them to obtain
di�erent solutions by existence.

Example 13.8. If we put an additional condition,
(

� � u = 0 in 
 ;
u = 0 in � � @
 ; @u

@� = 0 in � � @
 ;

where � � @
 is open. By making an extension by 0 to �u, we have� �� u = 0 around �
thanks to the following observation. By attening the boundary, we notice

u = 0; (@0)� u = 0; @nu = 0:

Then thanks to the equation, we know all the derivatives at the boundary are zero, which
means that �u vanishes on � of in�nite order. One can view this as another unique continu-
ation property.

This example motivates the study of the strategy to �nd analytic solutions :
8
><

>:

� � u = 0;
u = f on � ;
@u
@� = g on � ;

where � = @
 is smooth.
Supposef; g are analytic, we can solve the problem by computing all derivatives ofu on �

using the same idea as in the preceding example, which is the Cauchy{Kowalevski theorem.
The same computation applies for the full Taylor series. If the Taylor series is convergent,
then it is a local solution.

We try to solve
P(x; D ) =

X

j � j� K

c� (x)D � ;

what we care about � is the normal direction with normal vectorN . We look at the principal
symbol

P0(x; � ) =
X

j � j= K

c� (x)� � :

De�nition 13.9. The boundary � is non-characteristic for P if P0(x; N ) 6= 0, that is, the
principal symbol does not vanish along the normal direction.

This non-characteristic property will take place of the condition \we can compute the
full Taylor series" in the previous baby version of Cauchy{Kowalevski theorem. This helps
to determine some derivatives by using the equation itself as what we did in the preceding
example.

Theorem 13.10 (Cauchy{Kowalevski). If @
 = � is non-characteristic for P, then we have
local solvability.

Next time, we want to move away from the analytic class.



57

Unique continuation property and Carleman estimates

Date: March 2, 2023

14.1 Unique continuation without analyticity condition, Carleman estimates

We state our main theorem today in a general manner, but we only prove for� �.

Theorem 14.1. Let P = � @i aij @j + bj @j + c, where aij is Lipschitz and bj ; c 2 L1 . If
Pu = 0, and u = 0 in an open set, thenu � 0.

As a remark, note that the regularity assumed here is stronger than the one in the existence
theorem.

For simplicity, we only prove this whenaij = I to present the main idea. Without loss
of generality, we assumeu = 0 in B(0; 1). By making an inversionx 7! x � = x

jx j2 , we know
that P has a similar form in the sense that

� � 7! � c(x)� ;

where the constant can be divided from both sides. Then what we need to do is to push the
boundary of the unit ball inward.

We consider a small ball centered at a boundary pointx0 with a cuto� � selecting this
ball. Then

� � v = � �( �u ) = �f + 2r � � r u + � � � u;

where we just think of the equation as a perturbative way withf = bj @j u + cu . Therefore,

kvkH 2 = k�u kH 2 . k�f + 2r � � r u + � � � ukL 2 . k�f kL 2 + kukH 1 (suppr � )

thanks to the elliptic regularity. Sincef = bj @j u+ cu, we can absorbk�f kL 2 to the left hand
side by selecting the ball su�ciently small.

However, the last term is not small and di�cult to manage. The very nice idea addresses
this problem is that we do not weight thing properly in the preceding estimate. We want to
add some weights which is large where we want to showu is zero (nearx0) but is small in
suppr � . The idea is to add a weight which is large nearx0 and small in the shadow region.

To realize this, we need to choose one parameter family of weights. The idea is due to
Carleman in 1930s, then Aronszajn generalized to higher dimensions in 1950s. See [15] for
a brief history of the results on Carleman estimates. We choose an exponential weighte� � ,
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where� is a large parameter. Moreover, we need the constant uniform in� . First, we show
Carleman estimates and then use this to prove unique continuation.

Theorem 14.2 (Carleman estimates). Suppose� � v = f and

�
3
2 ke� � vkL 2 + �

1
2 ke� � r vkL 2 � Cke� � f kL 2 ;

where the constantC is uniform in � .

Remark 14.3. If you put H 2 on the left hand side, then the constant will blow up as� ! 1 .
Heuristically, one would expect� � 1

2 as the coe�cients for ke� � r 2vkL 2 .

Proof of unique continuation property assuming Carleman estimates.Assuming this �rst, we
show how to invoke Carleman estimates to prove unique continuation. Forv = �u , we write

� � u = Br u + cu; � � v = Br v + cv + 2r u � r � + u� � � B (r � )u;

where the last three terms are supported in the shadow region. By applying Carleman
estimates with v = �u , we obtain

�
3
2 ke� � vkL 2 + �

1
2 ke� � r vkL 2 . ke� � r vkL 2 + ke� � vkL 2 + ke� � ukH 1 (suppr � ) ;

where we useB; c 2 L1 . Moreover, we use the fact� � 0 in suppr � to see

�
3
2 ke� � vkL 2 + �

1
2 ke� � r vkL 2 . kukH 1 (suppr � ) � CkukH 1 :

Now, let � ! 1 , we know v = 0; r v = 0 in f � > 0g. Otherwise, the left hand side
would tend to in�nity, which violates the boundedness from above byCkukH 1 . Therefore,
by repeating this near each point on the boundary, we shrink the ball a little bit, which
proves Theorem 14.1. �

14.2 Proof of Carleman estimate (Theorem 14.2)

Now we want to prove Carleman estimates, which is sort of one level up from elliptic
regularity. We want to choose good weights� to realize the picture above and obtain the
estimates in Theorem 14.2. Note that not all weights would make the Carleman estimates to
be true after putting it into the inequality. We need to determine what functions� are good
weights in Carleman estimates. Note that we want the estimates to be uniform with respect
to the exponential weight, so when we prove the estimate, we want to take the weight out
of the picture. Hence, we do a substitutionw = e� � v. If � � v = f , then we start to derive
the equation forw by writing

� e� � � v = e� � f:

We compute
e� � @j v = @j

�
e� � v

�
� �@j � (e� � v) = ( @j � � � j )(e� � v)

and
�

X

j

(@j � � � j )2w = e� � f := g:

For this, we need to prove the estimate

�
3
2 kwkL 2 + �

1
2 kr wkL 2 . kgkL 2 :
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