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1. Wave maps and main results

Consider wave maps u : (Rm+1, η) → (N, h) with target manifold Nk being a complete
Riemannian manifold without boundary,

Dα∂αu = 0, (1.1)

where we raise and lower indices with the Minkowski metric η. Moreover, D is the covariant
derivative in the pullback bundle u∗TN .
As noted in [10], by noting the special solutions contained on geodesics, one easily sees

that N needs to be geodesically complete if one wants to consider the existence of global
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solution. Moreover, as we will see, for the critical scaling case we would focus on, small data
local existence will lead to small data global existence in view of scaling.

We make a further assumption that N is parallelizable, that is, there exist smooth vector
fields ē1, · · · , ēk such that at each p ∈ N the collection ē1(p), · · · , ēk(p) is an orthonormal
basis for TpN . This condition is natural, see [2, Section 4], in which they proved that if N is

compact, then we can find an embedding (N, h) ↪→ (Z, h̃) such that Z is parallelizable and

h̃ = h on i(N). The proof is based on the Whitney embedding theorem, normal exponential
map and a partition of unity argument. (For example, S2 is not parallelizable by the hairy
ball theorem but R3 is trivially parallelizable.) Also, we know S3 is parallelizable.

In local coordinates, we can express the intrinsic formulation by

□ua + Γa
bc(u)∂αu

b∂αuc = 0,

where Γa
bc’s are the Christoffel symbols of the target N . To compare, we also have an extrinsic

formulation of our wave maps. By using the Nash embedding theorem, we regard N as a
submanifold of some Euclidean space Rn, namely,

u = (u1, · · · , un) : Rm+1 → N ↪→ Rn.

Then (1.1) takes the form

uitt −∆ui = Bi
jk(∂αu

j, ∂αuk), 1 ≤ i ≤ n, (1.2)

where B(p) : TpN × TpN → (TpN)⊥ is the second fundamental form of N ⊂ Rn at any
p ∈ N . The derivation can be found in [9].

From the intrinsic formulation, one can see that the equation is invariant under the scaling
ϕ 7→ ϕ(λt, λx), which tells us the scale-invariant case is Ḣm/2 × Ḣm/2−1. The small data
global wellposedness in this critical regularity case is studied in [8] and [7].

Before we dive into the discussion of this case, we begin with a local existence result in
the simplest setting :

Hs+1
c (Rm;TN) =

{
(u0, u1) ∈ L2

loc(Rm;TN) :

u0 ∈ Hs+1
(
Rm;Rk

)
, u1 ∈ Hs

(
Rm;Rk

)
, supp (u1,∇u0) ⊂⊂ Rm

}
,

(1.3)

where s > m/2. We consider in the extrinsic formulation (1.2) and view the right hand side
as our source term

f := Bi
jk(∂αu

j, ∂αuk)

under the assumption that second fundamental form is bounded. By energy estimates for
the wave equation, we have

d

dt
∥∂s+1u(t)∥L2 ≲ ∥∂sf∥L2 .

Thanks to the Sobolev embedding Hs ⊂ C0∩L∞ and the Gagliardo-Nirenberg interpolation,
we are able to prove

∥∂s (A(u) (∂αu, ∂αu))∥L2 ≲
(
1 +

∥∥∂s+1u
∥∥
L2

)
uniformly in 0 ≤ t ≤ T when sup0≤t≤T ∥∂s+1u(t)∥L2 ≤ C0. Then we can obtain bounds for
∥∂s+1u(t)∥L∞L2 , which is the usual first step for a proof of local existence of nonlinear wave
equation by using a sequence of iterations.
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Therefore, we are able to obtain local wellposedness result for initial data in Hs+1
c (M ;TN)

with s > m/2. In particular, if (u0, u1) ∈ C∞(Rm;TN) with supp (u1,∇u0) ⊂⊂ Rm, then
the solution obtained is also smooth. See [1] for further discussion.

1.1. Main results. The main purpose of this note is to consider the Cauchy problem for
wave maps with initial data

(u, ut)|t=0 = (u0, u1) ∈ Hm/2 ×Hm/2−1(Rm;TN), (1.4)

where u0 takes value in N and u1 takes value in Tu0N . However, one cannot even expect
u0 ∈ L2 if u0 takes values on the sphere. To get around this, we abuse the notation and
assume constant functions are in Hs with zero norm. See [8, Section 1, footnote].
The main result we are going to discuss is as follows :

Theorem 1.1 (Shatah and Struwe, [7]). Suppose N satisfies the conditions stated before and
has bounded curvature in the sense that the curvature operator R and the second fundamental
form B and all their derivatives are bounded, and let m ≥ 4. Then there is a constant ε0 > 0
such that for any (u0, u1) ∈ Hm/2 ×Hm/2−1(Rm;TN) satisfying

∥u0∥Ḣm/2 + ∥u1∥Ḣm/2−1 < ε0,

there exists a unique global solution u ∈ C0(R;Hm/2) ∩ C1(R;Hm/2−1) of (1.1) and (1.4)
satisfying

sup
t

∥du(t)∥Ḣm/2−1 +

∫
R
∥du(t)∥2L2m(Rm) dt ≤ Cε0

and preserving any higher regularity of the data.

We will notice that the boundedness of B is used to derive the equivalence of norms.

1.2. Difficulties for critical scaling : a failure of direct application of Strichartz.
We consider the target N = Sk, then the wave maps equation can be written in the extrinsic
form

□ϕ = ϕ∂µϕ∂µϕ. (1.5)

It is known that the cubic covariant scalar wave equation is locally wellposed in the scale
invariant space for higher dimensions by Strichartz estimates (see [9, Page 304, Exercise
6.33]). It may seem natural to think of applying Strichartz estimates to (1.5) as well.

For (1.5), we write

□∂m/2−1ϕ = ϕ∂µϕ∂µ∂
m/2−1ϕ+ · · · .

In order to apply the Strichartz estimates

∥|D|sϕ∥LqLr ≲ ∥ϕ⃗(0)∥Ḣ1×L2 + ∥|D|s′□ϕ∥Lq′Lr′ ,

where
1

q
+
m

r
− s =

m

2
− 1 =

1

q′
+
m

r′
− s′ − 2.

Therefore, we have some special endpoints :

s = 1, (q, r) = (∞, 2), s′ = 0, (q′, r′) = (1, 2).
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For any other admissible pair (q, r), we can only achieve s < 1, so in order not to lose any
derivative, we need to use L∞L2 on the left hand side. Similarly, in order not to gain any
derivative on the right hand side, we need to put the nonlinearity in L1L2, so we obtain∥∥ϕ∂µϕ∂µ∂m/2−1ϕ

∥∥
L1L2 ≲ ∥∂µ∂m/2−1ϕ∥L∞L2∥ϕ∂µϕ∥L1L∞ .

However, the Strichartz estimates when r = ∞ is subtle since there are no summability and
equivalence of norms using the square functions.

In the critical scaling case, we need to exploit the geometric structure. [8] uses microlocal
gauge constructed using paradifferential calculus, which enable to treat error terms in L1L2

and apply Strichartz estimates to conclude. See Section 4.1. Coulomb gauge is used in
the work [7] that we are going to dicuss in detail, where the existence is proved in [12]
using a continuity method in which they essentially use a perturbative method and elliptic
estimates. For lower dimensions, things become more complicated. One may need to use
the null structure as well. See Section 4.2

2. Preliminaries on Lorentz spaces, interpolations, Strichartz estimates

For this section, we refer to [4], [11] and [3].

2.1. Lorentz spaces. For 1 ≤ p <∞ and f : Rd → C we define

∥f∥∗
Lp
weak (Rd) := sup

λ>0
λ|{x : |f(x)| > λ}|1/p (2.1)

and the weak Lp space

Lp
weak

(
Rd

)
:=

{
f : ∥f∥∗Lp

weak

(
Rd

)
<∞

}
.

Equivalently, f ∈ Lp
weak if and only if |{x : |f(x)| > λ}| ≲ λ−p. Note that the quantity in

(2.1) does not define a norm. This is the reason we append the asterisk to the usual norm
notation.

To make a side-by-side comparison with the usual Lp norm, we note that

∥f∥Lp =

(∫∫
0≤λ<|f(x)|

pλp−1dλdx

)1/p

=

(∫ ∞

0

|{|f | > λ}|pλpdλ
λ

)1/p

= p1/p
∥∥λ|{|f | > λ}|1/p

∥∥
Lp((0,∞), dλ

λ )

and, with the convention that p1/∞ = 1,

∥f∥∗Lp
weak

= p1/∞
∥∥λ|{|f | > λ}|1/p

∥∥
L∞((0,∞), dλ

λ )
.

This suggests the following definition.

Definition 2.1. For 1 ≤ p < ∞ and 1 ≤ q ≤ ∞ we define the Lorentz space Lp,q
(
Rd

)
as

the space of measurable functions f for which

∥f∥∗Lp,q := p1/q
∥∥λ|{|f | > λ}|1/p

∥∥
Lq( dλ

λ )
<∞.
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From the discussion above, we see that Lp,p = Lp and Lp,∞ = Lp
weak .

Lemma 2.2. Given f ∈ Lp,q, we write f =
∑
fm, where

fm(x) := f(x)χ{x:2m≤|f(x)|<2m+1}.

Then

∥f∥∗Lp,q ≈p,q

∥∥∥∥fm∥Lp
x(Rd)

∥∥∥
ℓqm(Z)

In particular, Lp,q1 ⊆ Lp,q2 whenever q1 ≤ q2.

2.2. Interpolations.

Definition 2.3 ([11, Chapter 1.3.1]). For an interpolation couple (A0, A1), we have

K(t, a) := inf
a=a0+a1

∥a0∥A0 + t∥a1∥A1

is an equivalent norm on A0 + A1 for 0 < t <∞, where t ∈ (0,∞) is a scaling parameter.

Definition 2.4 ([11, Chapter 1.3.2]). For 0 < θ < 1, 1 ≤ q <∞, we define

(A0, A1)θ,q :=

{
a : a ∈ A0 + A1, ∥a∥(A0,A1)θ,q =

(∫ ∞

0

[
t−θK(t, a)

]q dt
t

) 1
q

<∞

}
.

Theorem 2.5 ([11, Chapter 1.18.4]). Let 1 ≤ p0, p1 <∞, 0 < θ < 1,

1

p
=

1− θ

p0
+

θ

p1

and (A0, A1) be an interpolation couple. Then

(Lp0(A0), L
p1(A1))θ,p = Lp((A0, A1)θ,p).

Theorem 2.6 ([11, Chapter 1.18.6]). Let 0 < θ < 1, 1 < p0, p1 < ∞, p0 ̸= p1 and 1
p
=

1−θ
p0

+ θ
p1
. Then

(Lp0(A), Lp1(A))θ,q = Lp,q(A).

Remark 2.7. In general, you would expect the interpolation of Lp type spaces gives you
Lorentz spaces and the interpolation of Sobolev type spaces gives you Besov spaces.

See [3, Lemma 6.1] for the bilinear interpolation we need.

2.3. Strichartz estimates and its Lorentz refinement version. For the linear wave
equation

□v = h, v(t = 0) = f, ∂tv(t = 0) = g,

we recall the endpoint Strichartz estimates from Keel-Tao [3]

∥v∥
L2L

2(m−1)
m−3

+ ∥v∥C0Ḣγ + ∥∂tv∥C0Ḣγ−1 ≲ ∥f∥Ḣγ + ∥g∥Ḣγ−1 ,

where γ = m+1
2(m−1)

.

The proof of [7, Section 5] combine this with the interpolation

(L2L
2(m−1)
m−3 , L2Ẇ

2(m−1)
m−3 )1/(2(m−1),2 ↪→ L2

tL
(2m,2)
x ,
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where k = (m2 − 4m+ 1)/2(m− 1) to obtain

∥v∥
L2
tL

(2m,2)
x

+ ∥dv∥C0Ḣm/2−2 ≲ ∥f∥Ḣm/2−1 + ∥g∥Ḣm/2−2 . (2.2)

Remark 2.8. I’m not quite sure whether their argument is the correct way of understanding
this estimate and the interpolation, but it seems like it’s a mixed use of Gagliardo-Nirenberg
interpolation and the interpolation results in [11].

For the estimates (2.2), it is actually already proved in [3] although they did not ex-
plicit state this in their main theorems. This Lorentz space regularity is achieved in the
interpolation proof for the endpoint bilinear estimates in [3]. More specifically, they would
obtain

T : L2
tL

r′,2
x × L2

tL
r′,2
x → (l01)j,

which corresponds to [3, Section 6]. Here T is the bilinear operator

T (F,G) =

∫∫
s<t

⟨(U(s))∗F (s), (U(t))∗G(t)⟩ ds dt,

Tj(F,G) =

∫
t−2j+1<s≤t−2j

⟨(U(s))∗F (s), (U(t))∗G(t)⟩ ds dt

and

(q, r) =

(
2,

2σ

σ − 1

)
=

(
2,

2(m− 1)

m− 3

)
, σ =

m− 1

2
. (2.3)

Therefore, ∥∥∥∥∫ (U(s))∗F (s) ds

∥∥∥∥
Ḣ−γ

≲ ∥F∥
L2
tL

r′,2
x

and hence

∥U(t)f∥L2
tL

r,2
x

≲ ∥f∥Ḣγ ,

where γ satisfies
1

2
+
m

r
=
m

2
− γ,

1

2
+
m

r′
= 2 +

m

2
+ γ.

However, though it is overkill to prove the nonendpoint case in this bilinear manner, it is
worth doing if we want this Lorentz gain. In particular, we would get the same estimates
with (q, r) not being the specific pair in (2.3). By choosing γ = m

2
− 1, we obtain

∥U(t)f∥L2
tL

2m,2
x

≲ ∥f∥Ḣm/2−1 ,

where 2m can be seen from scaling. This will lead to (2.2). By Duhamel’s principle, we
obtain

∥v∥L2
tL

2m,2
x

+ ∥dv∥C0Ḣm/2−2 ≲ ∥f∥Ḣm/2−1 + ∥g∥Ḣm/2−2 + ∥f∥
L1
t Ḣ

m/2−2
x

. (2.4)

3. Proof of Theorem 1.1

In this section, we use d to denote ∂α, ∇ to denote ∂j, D to denote covariant derivative
unless otherwise specified.
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3.1. Gauge choices. By applying the result in [12], we are able to choose Coulomb gauge to
transform the equation solved by Aβ to be a system of elliptic equations. To present the idea,
we first use the assumptions on N to choose a smooth orthonormal frame {ēa◦u}1≤a≤k for the
pullback bundle u∗TN . Moreover, we may freely rotate this frame at any z = (t, x) ∈ Rm+1

with a matrix (Rb
a) = (Rb

a(z)) ∈ SO(k), thus obtaining the frame

ea = Rb
a(ēb ◦ u), 1 ≤ a ≤ k.

Expressing du = ∂αu∂α as

du = qaea, q = qα dx
α,

where q = (qaα) is a k × (m+ 1) matrix. Thus

|du|2 = |q|2 =
∑
α

|qα|2.

In particular, all the Lebesgue spaces for du are well-defined and hence by interpolation,
Lorentz spaces are also well-defined. Also, they are independent of the choice of “gauges”
(Rb

a) and coincide with the Lp norm of du in the extrinsic representation of u as a map
u : Rm+1 → N ⊂ Rn. However, when it comes to higher derivatives, there will be second
fundamental forms involved to measure the difference between extrinsic derivatives and the
intrinsic ones.

Let D be the pullback covariant derivative, we express the connection 1-form

Dαea = Ab
a,αeb, 1 ≤ a ≤ k,

where the comma notation does not mean anything related to derivatives but just a sep-
aration between different indices. Here A = Aαdx

α is a matrix-valued 1-form. Now we
compute

R(∂αu, ∂βu)ea = DαDβea −DβDαea = Dα(A
b
a,βeb)−Dβ(A

b
a,αeb)

= (∂αA
c
a,β − ∂βA

c
a,α + Ac

b,αA
b
a,β − Ac

b,βA
b
aα)ec := F c

a,αβec,

or one may drop the indices to write for short :

∂αAβ − ∂βAα + [Aα, Aβ] = Fαβ = R(∂αu, ∂βu). (3.1)

In fact, we want to select a specific bunch of Rb
a so that the corresponding A’s are Coulomb

gauge, which satisfies
m∑
i=1

∂iAi = 0.

The existence of Coulomb gauge is proved in [12] under the assumption that ∥F∥Lm/2 is
small enough. In our case, given the expression for F and the boundedness on R in the
assumption, it suffices to require ∥du∥Lm ≲ ∥du∥Ḣm/2−1 < ε0 to be small enough. By (3.1),
we choose α = i and take ∂i to obtain m+ 1 elliptic equations :

∆Aβ + ∂i[Ai, Aβ] = ∂iFiβ = ∂i(R(∂iu, ∂βu)), 0 ≤ β ≤ m.

In fact, the results in [12] gives you more information about A, which satisfies

∥A∥Lm ≲ ∥A∥W 1,m/2 ≲ ∥F + [A,A]∥Lm/2 ≲ ∥R∥L∞∥du∥2Lm + ∥A∥2Lm ,
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where the second step uses elliptic estimates (boundedness of Riesz transform in Lm/2) and
the constant C is uniform. Then by bootstraping, we know

∥A∥Lm ≲ ∥R∥L∞∥du∥2Lm ≲ ∥du∥2
Ḣm/2−1 ≤ Cε0.

The smallness of ∥A∥Lm is always assumed, and this estimate is contained in [12, Lemma
2.5]. Therefore, going forward, we always assume ∥du∥Ḣm/2−1 < ε0 to be small enough and
prove an a priori bound under this assumption to close the argument.

By elliptic estimates, chain rule and Sobolev embeddings, we can easily prove the following
lemma.

Lemma 3.1. (Under the assumption that du having sufficiently small Lm norm.) For any
time t, we have the following :

a) For 1 ≤ k ≤ m/2, k ∈ N,
k − 1
m
2
− 1

≤ a ≤ 1,
1

r
=

k

m
+

a

2m
,

there holds

∥∇kA∥Lr + ∥∇k−1∂0A∥Lr ≤ C∥∇k−1F∥Lr ≤ C∥du∥2−a
L2m∥du∥aḢm/2−1 .

b) By Gagliardo-Nirenberg interpolation,

∥∇k−1A2∥Lr ≤ C∥A∥Lm∥∇kA∥Lr .

c) For any l ≤ [m/2], l ∈ N, there holds

l∑
k=0

∥∇kF∇l−kdu∥L2 ≤ C∥du∥2L2m∥du∥Ḣl+1 .

d) We have the following estimates regarding the Lorentz spaces :

∥A∥L∞ ≤ C∥du∥2L2m,2 .

Remark 3.2. Here, ∇ denotes any spatial covariant derivative Dj. In the proof of this lemma,
we need to apply Gagliardo-Nirenberg interpolation several times, such as

∥∇k0R∥Lm/k0 ≲ ∥R∥L∞∥∇m/2R∥L2 ≲ ∥|du|m/2∥L2 ≲ ∥du∥2/mLm ≲ 1.

3.2. Equivalence of norms. By definition of du,

du = qaea,

we know that |du| = |q|. We also claim that for higher derivatives, due to the presence
of second fundamental form, the norms are different. Fortunately, under assumptions of
boundedness of B and smallness of ε0, the H

s norms are equivalent.
For any W ∈ X(u∗TN), suppose the coordinates in the frame {ea} are given by

W = Qaea = Qe, ∥W∥L2 = ∥Q∥L2 .

The extrinsic partial derivatives of W , ∂kW , can be computed as follows

DkW = ∂kW +B(u)(∂ku,W ) = (∂kQ+ AQ)e,
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which implies

∂kW = (∂kQ+ AQ)e−B(u)(∂ku,W ).

Therefore,

|∥∂W∥L2 − ∥∂Q∥L2| ≲ ∥AQ∥L2 + ∥(du)Q∥L2 ≲ (∥A∥Lm + ∥du∥Lm)∥pQ∥L2 ≲ ∥∂Q∥L2 ,

where we need to assume ∥du∥Lm small enough so that the gauge choices are justified.

3.3. A priori bounds. In order to derive existence, we need some a priori bounds. Recall

Dαea = Ab
a,αeb, 1 ≤ a ≤ k.

We write

∂βu = qaβea, du = qaea

so that

0 = Dα∂βu−Dβ∂αu = ∂αq
a
βea+q

a
βA

b
a,αeb−∂βqaαea−qaαAb

a,βeb = (∂αq
b
β+q

a
βA

b
a,α−∂βqbα−qaαAb

a,β)eb.

Denote

Dαqβ = (∂α + Aα)qβ, (3.2)

then we have

0 = (Dαqβ −Dβqα)e,

that is, we have Dαqβ −Dβqα = 0.
Moreover, by noting that wave map equation (1.1) is equivalent to Dαqα = 0 and hence

0 = DβD
αqα = DαDβqα + Fα

β qα = DαDαqβ + Fα
β qα.

We can further expand this by using (3.2) to obtain

(∂2t −∆)qβ = 2Aα∂αqβ + (∂αAα)qβ + AαAαqβ + Fα
β qα,

where we denote the right hand side by hβ.
We can estimate q in terms of the initial data and h by applying the Strichartz estimates

in the Lorentz spaces setting (2.4) on some time interval [0, T ] so that ∥du∥Ḣm/2−1 is small
enough, uniformly for 0 < t < T . Thanks to the equivalence of norms on such time interval,
we obtain

∥du∥C0
t Ḣ

m/2−1+∥du∥L2
tL

2m,2
x

≲ ∥du(0)∥Ḣm/2−1+∥h∥
L1
t Ḣ

m/2−2
x

≲ ∥u0∥Ḣm/2+∥u1∥Ḣm/2−1+∥h∥
L1
t Ḣ

m/2−2
x

.

(3.3)

Remark 3.3. Heuristically, the difficulty of how to estimate the source term in L1L2 appears
again (we just put the derivatives |D| implicitly in the norm). The resolution of this in [7] is
to use the Lorentz spaces, where the key estimate is Lemma 3.1 (d) since when one encounter
∥A∥L∞∥∂q∥Ḣm/2−2 with no derivatives falling on A, the term ∥A∥|L1L∞ is impossible to be
bounded without Lorentz spaces introduced, as we can see below.
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Now we estimate the term ∥h∥
L1
t Ḣ

m/2−2
x

. First, we consider the case when m is even. We

compute

∥h∥Ḣm/2−2 ≤ 2∥A∂q∥Ḣm/2−2 + ∥(∂A)q∥Ḣm/2−2 + ∥A2q∥Ḣm/2−2 + ∥Fq∥Ḣm/2−2

≲ ∥A∥L∞∥q∥Ḣm/2−1 +
∑

k1+k2=m/2−2

∥∇k1q∥Lr1

(
∥∇k2+1A∥Lr2 + ∥∇k2A2∥Lr2 + ∥∇k2F∥Lr2

)
≲ ∥A∥L∞∥q∥Ḣm/2−1 +

∑
k1+k2=m/2−2

∥∇k1q∥Lr1∥∇k2F∥Lr2

where 1
2
= 1

r1
+ 1

r2
in the second inequality, we apply Lemma 3.1 (a), (b) and the smallness

of ∥A∥Lm in the third step.
Moreover, from Lemma 3.1 (d), we obtain

∥h∥Ḣm/2−1 ≲ ∥du∥2L2m,2∥q∥Ḣm/2−1 + ∥q∥1−a1
L2m ∥q∥a1

Ḣm/2−1∥du∥1−a2
L2m ∥du∥a2

Ḣm/2−1 ,

where

1

r1
=
k1
m
+a1(

1

2
−m/2− 1

m
)+

1− a1
2m

=
k1
m
+
1 + a1
2m

,
1

r2
=
k2 + 1

m
+
a2
2m

, k1+k2 =
m

2
−2,

1

2
=

1

r1
+

1

r2
.

From these, we notice that a1 + a2 = 1 so we obtain from the equivalence of norms between
du and q that

∥h∥Ḣm/2−1 ≲ ∥du∥2L2m,2∥du∥Ḣm/2−1 .

For m odd, we need to worry about the top order half derivative. We can achieve the
desired bound by interpolation.

Therefore, by combining this with (3.3), we obtain

∥du∥C0
t Ḣ

m/2−1 + ∥du∥L2
tL

2m,2
x

≤ C
(
∥u0∥Ḣm/2 + ∥u1∥Ḣm/2−1 + ∥du∥2L2L2m,2∥du∥C0

t Ḣ
m/2−1

)
.

and hence

∥du∥C0
t Ḣ

m/2−1 + ∥du∥L2
tL

2m,2
x

≤ C̃ε0

when ∥u0∥Ḣm/2 + ∥u1∥Ḣm/2−1 ≤ ε0 sufficiently small. This can be proved by a bootstrap
argument by assuming

∥du∥L2L2m,2 + ∥du∥C0
t Ḣ

m/2−1 ≤ ε

and to show

∥du∥L2L2m,2 + ∥du∥C0
t Ḣ

m/2−1 ≤
1

2
ε,

where ε, ε0 both small enough. This is exactly the same as the classical example for bootstrap
in [9]. Therefore, we obtain the desired global a priori bound

∥du∥C0
t Ḣ

m/2−1 + ∥du∥L2
tL

2m,2
x

≤ C(∥u0∥Ḣm/2 + ∥u1∥Ḣm/2−1)

when ∥u0∥Ḣm/2 + ∥u1∥Ḣm/2−1 ≤ ε0 small enough. Here, global means that C is uniformly in
t ∈ R and the bound holds on any time interval the solution exists.
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3.4. Higher regularity results. To prove the global existence, we need to prove a higher
regularity result. First,

d

dt

1

2
∥du(t)∥2L2 =

∫
⟨D0D

αu,Dαu⟩ =
∫

⟨D0u,D
αDαu⟩ = 0,

so u ∈ H1.
Now we show that smooth solutions u of (1.2) with

∥du∥C0
t Ḣ

m/2−1 + ∥du∥L2
tL

2m,2
x

sufficiently small remain bounded in terms of the data (u0, u1) ∈ H l × H l−1(Rm;TN) for
any l ≥ m/2. This can be easily seen from the standard energy estimates.

Let v = Dju = ∇u, where ∇ denotes the covariant derivatives in spatial directions. From

0 = DjDα∂
αu = DαDj∂

αu+R(∂ju, ∂αu)∂
αu = DαD

αv +R(∂ju, ∂αu)∂
αu,

we obtain
DαDαv = Fdu, Fαβ = R(∂αu, ∂βu). (3.4)

Upon multiplying this by D0v and integrating over Rm, we find

d

dt
∥Dv∥2L2 ≲

∫
|⟨D0Dαv,D

αv⟩| ≲
∫

|⟨D0v,DαD
αv⟩|+ |⟨R(∂0u, ∂αu)v,Dαv⟩|

≲ ∥FduDv∥L1 ≲ ∥F∥Lm∥du∥
L

2m
m−2

∥Dv∥L2 ≲ ∥F∥Lm∥Dv∥2L2 ≲ ∥du∥2L2m∥Dv∥2L2 ,

where we use the embedding Ḣ1 ⊂ L
2m
m−2 . By integrating this and the equivalence of covariant

and extrinsic Lp, we have the boundedness of ∥u∥H2 .

We differentiate (3.4) once more to compute

∇(Fdu) = ∇DαDαv = Dα∇Dαv + FDαv = DαDα∇v + FDv,

which implies

d

dt
∥D∇v∥2L2 ≤

∫
|⟨D0∇v,∇(Fdu) + FDv⟩| ≲ ∥D∇v∥L2∥∇(Fdu)∥L2 .

In general, for higher derivatives, we would derive

d

dt
∥∇l−1D∇v∥2L2 ≲

l∑
k=0

∥∇kF∇l−kdu∥L2∥∇l−1D∇v∥L2 . (3.5)

Moreover, for l = 1, · · · , [m/2], we can estimate by Lemma 3.1 to find

l∑
k=0

∥∇kF∇l−kdu∥L2 ≲ ∥du∥2L2m∥du∥Ḣl+1 ≲ ∥du∥2L2m∥∇l−1D∇v∥L2 ,

which gives the boundedness of ∥du∥Ḣl+1 for l ≤ [m/2]. (This is already enough to conclude

the global existence result in Hm/2.) In particular, du ∈ L∞
t H

[m/2]+1
x ↪→ L∞.

For larger l, although we cannot directly apply the estimates in Lemma 3.1, it is much
simpler due to the boundedness of du. (This part is just to prove the last line in the statement
of Theorem 1.1.) For l = [m/2] + 1, the only difference happens when k = 0 or k = l, where
the first case is direct bounded by ∥F∥L∞∥du∥Ḣl+1 and is easy to bound due to du ∈ L∞.
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For the second case, one needs to estimate ∥∇lFdu∥L2 by ∥du∥Ḣl+1 . Recall that ∇ denotes
any spatial covariant derivative, so

|(∇[m/2]+1F )| ≲ ||du|[m/2]+3|.

Since du ∈ H [m/2]+1 ⊂ L∞ ∩ L2, we can estimate

∥∇lFdu∥L2 ≲ ∥|du|[m/2]+4∥L2 ,

One can find an appropriate 2 ≤ p ≤ ∞ and θ < 1 such that

∥du∥Lp ≲ ∥D[m/2]+2du∥θL2∥du∥1−θ
L2 ,

where 1
2
− 1

p
= m+4

2m
θ. We choose θ = 4

m+4
, then 1/p = (m − 4)/(2m), then if one needs

∥D[m/2]+2du∥2L2 in the right hand side of the estimates, one would expect

1

2
>
k

p
, 2 ≤ p ≤ ∞

with k = m+4
2

which is possible to achieve. For l = [m/2] + 2, one also needs to consider
k = 1 and k = l − 1, but this time we know ∇du ∈ L∞, so we can achieve higher regularity
(not necessarily uniform in time) by bootstraping.

Finally, we use the equation (1.2) to obtain the higher time derivatives and mixed space-
time derivatives.

3.5. Global existence. First, we approximate the initial data (u0, u1) ∈ Hm/2×Hm/2−1(Rm;TN)

by smooth initial data (u
(k)
0 , u

(k)
1 ) with some compact support property indicated in (1.3),

which ensures local existence. In other words, (u
(k)
0 , u

(k)
1 ) → (u0, u1) inH

m/2×Hm/2−1(Rm;TN)
as k → ∞. Suppose the initial energy

∥u0∥2Ḣm/2 + ∥u1∥2Ḣm/2−1 ≤ ε0

is sufficiently small, then the local solutions u(k) satisfies our a priori bounds (uniformly on
the time of existence)

∥du(k)∥C0
t Ḣ

m/2−1 + ∥du(k)∥L2
tL

2mx ≲ ∥u(k)0 ∥Ḣm/2 + ∥u(k)1 ∥Ḣm/2−1 ≤ Cε0

and also the higher regularity results. Therefore, if we choose ε0 so that ε0, Cε0 are sufficiently
small, then we know that u(k) can be extended to a solution for all time. (Suppose by
contradiction that the solution only exists on [0, T ], then one can construct solution by local
existence in Hm/2+1 at T since ∥du(k)∥H[m/2]+1 is finite.)
Hence, by higher regularity results, we know ∥du(k)∥

H
m/2
loc (Rm+1)

is bounded uniformly (the

subscript loc is added in since we consider both space and time) and hence u(k) → u weakly

in H
m/2
loc (Rm+1) by passing to a subsequence. Moreover,

∥du∥C0
t Ḣ

m/2−1 + ∥du∥L2
tL

2m
x

≲ ∥u0∥Ḣm/2 + ∥u1∥Ḣm/2−1 .

By Rellich compactness theorem m/2 − 1 > 1, du(k) → du converges in L2 and hence
pointwisely almost everywhere, which allows us to pass to the limit in the equation (1.1) so
that u solves it with the desired initial data.
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3.6. Uniqueness. In order to prove uniqueness, we use the extrinsic form (1.2). Suppose u, v
are two solutions in Hm/2 with the same initial data, and also suppose ∥du∥L2L2m+∥dv∥L2L2m

is finite. Then w = u− v satisfies

□w = (B(u)−B(v)) (∂αu, ∂
αu) +B(v)(∂αu+ ∂αv, ∂

αw).

Multiplying this by wt and do the usual energy estimates, one is able to show

d

dt
∥dw∥2L2 ≲

(
∥du∥2L2m + ∥dv∥2L2m

)
∥dw∥2L2 ,

where we use the geometric structure to exploit the orthogonality condition

⟨B(u)(·, ·), ut⟩ = 0 = ⟨B(v)(·, ·), vt⟩.
Therefore, the solution is unique since dw(0) = 0.

4. Related works on wave maps

4.1. An overview of Tao’s method. We follow [10], [8]. Basically, [8] still wants to put
the nonlinearity in L1L2 and apply Strichartz estimates. To get around the failure discussed
in Section 1.2, we use Littlewood-Paley theory.

Since nonlinear estimates are difficult to prove, we seek to reduce to linear estimates by
using paradifferential calculus. The basic principle is to transform the equation into an
infinite system

P lin(ϕ<k)ϕk = error,

where ϕ<k = P<k−10ϕ, ϕk = Pkϕ. For wave maps with sphere target, we apply Pk to (1.5)

□(Pkϕ
i) = Pk(ϕ∂

µϕ∂µϕ),

where we still need to split the expression inside the projection Pk on the right hand side.
We would expect terms like

Pk(ϕk1∂
µϕk2∂µϕk3),

where the only problematic term is when k1 < min{k2, k3}, that is, the undifferentiated term
is the smallest in frequency. Heuristically, we usually expect (∇ϕ)ψ is very small compared
to ϕ∇ψ, where ψ is much rougher, i.e. higher frequency due to the high oscillation.

It turns out that we can linearize it into

□ϕi
k = 2ϕi

<k∂
αϕj

<k∂αϕ
j
k + error,

where the error is in the sense of L1L2, see [8, Section 4] for the details. However, this is
not satisfactory enough. One uses the geometric structure again ϕj∂αϕ

j = 0, so we would
expect good control for ϕj

<k∂αϕ
j
k, which allows us to write the above equation as

□ϕi
k = 2(ϕi

<k∂
αϕj

<k − ϕj
<k∂

αϕi
<k)∂αϕ

j
k + error.

In this way, we obtain anti-symmetric matrices

(Aα
<k)

ij =
(
ϕi
<k∂

αϕj
<k − ϕj

<k∂
αϕi

<k

)
.

See [8, Section 5] for details.
The importance of the anti-symmetry can be seen from the following ODE analogue :

ψ̈ = 2A0ψ̇. (4.1)
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Let U(t) be a matrix-valued function solving the ODE

U̇(t) = A0U(t),

with A0 anti-symmetric matrix and U(0) = I. Thanks the anti-symmetry,

d

dt
U(j)(t) · U∗

(i)(t) = 0,

where U(j) denotes the j-th column of U , that is, U remains orthogonal for all time. Suppose
we make a linear change of variable

ψ = U(t)w,

where the orthogonality allows us to reduce the estimate for ψ to w. By plugging this into
(4.1) and ignore zeroth order term for w, which can be treated as an error term, we obtain

ẅ = 0.

Therefore, we seek for a gauge transformation

ϕk 7→ U<kϕk

so that U<k is orthogonal and satisfies

∂αU<k = Aα
<kU<k.

Unfortunately, this is unable to achieve unless some further constraints hold for A. Instead,
we look for approximate solutions by defining them inductively by

Uk := (ϕi
kϕ

j
<k − ϕj

<kϕ
i
k)U<k, U<k = I +

∑
−M<k′<k

Uk′ ,

where Uk then satisfies
∂αUk ≈ AαU<k.

One would expect almost orthogonality condition for

U = I +
∑

−M<k

Uk,

and finally obtain
□(U<kϕk) = error,

which allows us to use linear estimates for U<kϕk and closed the loop.

4.2. Null structure. [5] exploits the null structure in the nonlinearity to show the global
existence with small, compactly supported smooth data by applying the vector field method.
This is discussed in [10]. In [6], the authors take advantage of the null structure in a different
way, which works better for translation invariant space. Also, compared to the preceding
ones, we do not need the pointwise bound and so we don’t need to assume decay (compact
support) in this setup. This idea can be summarized as follows. For □ϕ = Q0(ϕ, ϕ) with
nonlinearity denoted by Q0, we make a Fourier transform

(τ 2 − |ξ|2)ϕ̃ =

∫
τ=τ1+τ2,ξ=ξ1+ξ2

m(τ1, ξ1, τ2, ξ2)ϕ̃(τ1, ξ1)ϕ̃(τ2, ξ2) dτ1 dξ1,
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where in the integrand, things got worst when along the light cone, that is, |τ1| = |ξ1|,
|τ2| = |ξ2|. In view of the left hand side, the worst case is to have |τ | = |ξ|. When all
these happen at the same time, we say that is has resonant interactions. However, when
we have the null structure, the m we have will give some cancellations in the worst case
scenario so that we actually don’t need to worry those anymore. First, from basic geometry,
resonant interactions can only happen when (τ1, ξ1), (τ2, ξ2) are along the same direction on
the lightcone.

For example, consider a typical type of nonlinearity with null structure :

Qij(ϕ, ψ) = ∂iϕ∂jψ − ∂jϕ∂iψ,

which corresponds to (ξ1)i(ξ2)j − (ξ1)j(ξ2)i in Fourier space with

|(ξ1)i(ξ2)j − (ξ1)j(ξ2)i| = |ξ1||ξ2|| sin∠(ξ1, ξ2)|
where when the resonant interactions happen, angle is zero so that we would expect cancel-
lations. Also, consider another typical type of nonlinearity with null structure :

Q0(ϕ, ψ) = ∂µϕ∂
µψ =

1

2
(□(ϕψ)− (□ϕ)ψ − ϕ(□ψ)).

As we can see from the discussion about Xs,b spaces, □ is invertible away from the light cone,
so the worst things happen there. However, this has null structure m = |ξ1||ξ2|O(|∠(ξ1, ξ2)|2)
while we assume |τ1| ≲ |ξ1| and |τ2| ≲ |ξ2|.
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