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This note is intended as an overview of [AKU24].

1. Preliminaries

1.1. Einstein-Maxwell system in the spherical symmetry. The Einstein–Maxwell-neutral
scalar field system consists of a spacetime (M, g) equipped with an electromagnetic field F and a
scalar field ϕ : M → R satisfying the equations

(1.1) Ric(g)− 1
2Rg = 2(TEM + T SF),

(1.2) dF = 0, d ⋆ F = 0,

(1.3) □gϕ = 0,

where the energy-momentum tensors are defined by

TEM
µν := FµαF

α
ν − 1

4gµνFαβF
αβ,

T SF
µν := ∂µϕ∂νϕ− 1

2gµν∂αϕ∂
αϕ.

We say that (M, g, F, ϕ) is spherically symmetric if (M, g) is spherically symmetric, F has the
form (1.12), and ϕ is independent of the angular coordinates. In this case, Einstein’s equation (1.1)
reduces to the wave equations

∂u∂vr = −Ω2

4r
− ∂ur∂vr

r
+

Ω2e2

4r3
,(1.4)

∂u∂vlog Ω
2 =

Ω2

2r2
+

2∂ur∂vr

r2
− Ω2e2

r4
− 2∂uϕ∂vϕ,

and Raychaudhuri’s equations

∂u

(
∂ur

Ω2

)
= − r

Ω2
(∂uϕ)

2,(1.5)

∂v

(
∂vr

Ω2

)
= − r

Ω2
(∂vϕ)

2.(1.6)

The Maxwell equations (1.2) are automatically satisfied since e is constant. Finally, the wave
equation (1.3) is equivalent to

(1.7) ∂u∂vϕ = −∂vr∂uϕ
r

− ∂ur∂vϕ

r
.

We recall the shorthand notations for spherically symmetric Einstein equations. The renormal-
ized Hawking mass is

ϖ := m+
e2

2r
and the mass aspect function

(1.8) µ :=
2m

r
=

2ϖ

r
− e2

r2
,

1
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The traditional notations are as follows :

ν := ∂ur, λ := ∂vr.

Since

(1.9) m =
r

2
(1 +

4∂ur∂vr

Ω2
).

we have

κ := − Ω2

4∂ur
=

λ

1− µ
, γ := − Ω2

4∂vr
=

ν

1− µ
.

We can derive the fundamental relations

∂uϖ = (1− µ)
r2

2ν
(∂uϕ)

2,(1.10)

∂vϖ =
r2

2κ
(∂vϕ)

2,(1.11)

∂uκ =
rκ

ν
(∂uϕ)

2,

∂vγ =
rγ

λ
(∂vϕ)

2.

1.2. Geometry of Reissner–Nordström family. The Reissner–Nordström family forms the
unique family of spherically symmetric asymptotically flat four-dimensional solutions to the Ein-
stein–Maxwell equations. (Note that there is AdS2 × S2 if eliminating the asymptotically flat
assumption. See [Ton].) It is of the form

gM,e = −Ddt2 +D−1 dr2 + r2 (dθ2 + sin θ2 dφ2),

with a one-form A = −Q
r dt−B cos θ dφ, where D(r) = 1− 2M

r + e2

r2
and |e| =

√
Q2 +B2.

The extremal case refers to the case |e| = M , where D(r) = (1 − M
r )

2. Here, e is a real
parameter representing the charge of the electromagnetic field. Restricting to spherically symmetric
electromagnetic fields with constant Coulomb charge e ∈ R, we have

F = dA =
e

r2
dr ∧ dt.

In order to put Reissner-Nordström metric in double null gauge, we define the retarded time
coordinate u := 1

2(t − r∗) and the advanced time coordinate v := 1
2(t + r∗). Here, the tortoise

coordinate

r∗(r) :=

∫ r dr′

D(r′)
= r −M − M2

r −M
+ 2M log(r −M) + C

in the extremal case. In double null gauge, the metric takes the Eddington-Finkelstein double null
form

gM,e = −4Ddudv + r2gS2

and hence Ω2 = 4D. Then du ∧ dv = 1
2(dt ∧ dr∗) =

1
2D

−1 dt ∧ dr. Thus,

(1.12) F = −Ω2e

2r2
du ∧ dv.

From the identity r∗ = v − u, we know that in double null coordinates, ν = ∂ur = −D and
λ = ∂vr = D. In gM,e, we have ϖ =M and hence

µ =
2M

r
− e2

r2
= 1−D.

We also derive that

(1.13) κ =
λ

1− µ
= 1, γ :=

ν

1− µ
= −1.
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Notice that we have the freedom to choose r at a given point (u0, v0) ∈ R2 by simply changing the
origin of the (u, v)-coordinates. That is, given parameters M and |e| ≤ M , for any R0 ∈ (r+,∞),
we can uniquely define r such that r(u0, v0) = R0 such that the geometric quantities defined above
make it a Reissner-Nordström black hole exterior.

Note that the double null coordinates only cover the domain of outer communication if |e| ≤M .
The event horizon H+ formally corresponds to u = +∞ and null infinity I+ formally corresponds
to v = +∞. With this understanding, we may extend geometric quantities to the horizon by noting
that D(∞, ·) = D|H+ = 0.

To actually extend past the event horizon, we examine in the ingoing Eddington-Finkelstein form

gM,e = −4Ddv2 + 4 dv dr + r2gS2 ,

which is regular across H+. In (v, r) coordinates, we define T := ∂v, which is the time-translation
Killing vector field. We remark that this is exactly ∂t in the (t, r)-coordinates in the domain of outer
communication. We also define Y := ∂r in these coordinates. Since g(∇∂v∂v, ∂v) =

1
2∂v(−4D) = 0

and g(∇∂v∂v, ∂r) = −g(∂v,∇∂r∂v) = 2∂rD. Thus,

∇TT =
1

2
∂rD∂v + (

1

2
D∂rD)∂r.

Restricting to H+ (i.e., r = r+ =M +
√
M2 − e2), we obtain

∇TT |H+ =
1

2

r+ − r−
r2+

T |H+ =: κT |H+ .

One can see the redshift factor (surface gravity) κ = 0 in the extremal case.
In a general setup,

κ :=
1

r2
(ϖ − e2

r
).

See for instance [Daf05a, Section 6].
To understand the causality of these vector fields better, we go back to the double null coordi-

nates. One can check that

Y =
1

∂ur
∂u, T =

4λ

Ω2
∂u − 4ν

Ω2
∂v = ∂u + ∂v,

where T = 4λ
Ω2∂u − 4ν

Ω2∂v is the Kodama vector field in a generic double null coordinate system.
Therefore, one can see that T is future-directed timelike for r > r+ while Y is past-directed null
and is transverse to H+.

1.3. The Couch–Torrence conformal inversion. ERN has a discrete conformal symmetry Φ
discovered by Couch and Torrence [CT84], where a nice exposition can be found in [Are18].

In (t, r∗) coordinates,

Φ(t, r∗, θ, φ) = (t,−r∗, θ, φ).
Recall that r∗ = 0 precisely on the photon sphere, so this symmetry fixes the photon sphere. It
sends H+ to I+ and vice versa.

In standard coordinates (t, r), the Couch-Torrence inversion takes the form Φ(t, r) = (t, r′),
where r′(r) = rM

r−M . Moreover, in double null coordinates, Φ(u, v) = (v, u).
Therefore, one can see the relation

r2∂v 7→ (r′)2∂u =
r2M2

(r −M)2
∂u =M2 1

D
∂u =M2 1

∂ur
∂u =M2Y,

where we recall that Y = ∂r in the (v, r) coordinates. This gives the relation between Newman-
Penrose constant I0 and the horizon charge H0.
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1.4. Aretakis instability. Consider the linear wave equation on a fixed background g : □gϕ = 0
in spherical symmetry, i.e., the form (1.7). We introduce the radiation field ψ := rϕ, then

∂u∂vψ = (∂u∂vr)ϕ.

Recall from (1.4) in Einstein equations that

∂u∂vr = −Ω2

4r
−∂ur∂vr

r
+
Ω2e2

4r3
=
κ∂ur

r
−∂ur(1− µ)κ

r
−κe

2∂ur

r3
= κν(

µ

r
−e

2

r3
) = 2κνr−2(m− e

2

2r
) = 2κνκ.

Now if we specialize to g = gERN , then κ = 1, ν = −D and 2κ = D′. Hence, ∂v∂ur = −DD′ and
□gERNϕ = 0 reads as follows :

∂u∂vψ = −DD′ψ

r
.

Moreover, we compute

∂v(Y ψ) = ∂v(
∂uψ

∂ur
) =

∂v∂uψ

∂ur
− ∂uψ

(∂ur)2
∂v∂ur = −D′ψ

r
+D′Y ψ.

Since D′|H+ = 0 in the extremal case, we know that Y ψ is a constant along H+. Therefore, in
sharp contrast to the subextremal case, Y ψ does not decay along H+. This constant is written as
H0[ϕ] and is called the zeroth Aretakis charge of ϕ.

Since [∂v, Y ] = − ∂v∂ur
(∂ur)2

∂u = D′Y , we commute Y again and arrive at

∂v(Y
2ψ) = [∂v, Y ](Y ψ) + Y (∂vY ψ) = D′Y 2ψ + Y (−D′ψ

r
+D′Y ψ).

Since Y D′ = 2M 1
∂ur

∂u((1−M/r)r−2) = 2M2r−4 +2M(1−M/r)∂u(r
−2)

∂ur
, we know that Y D′|H+ =

2M−2 and hence

∂v(Y
2ψ|H+) = 2M−2Y ψ − 2M−3ψ = 2M−2H0[ϕ] + decaying terms.

Here, one can heuristically use the Couch-Torrence symmetry to see that one can expect ψ decays
like v−1 on H+. Therefore, integrating in v for v large, one obtains that

|Y 2ψ| ≳ |H0[ϕ]|v on H+, v ≫ 1.

In fact, one can derive that |Y kψ| ≳ |H0[ϕ]|vk−1 on H+ for k ≥ 1 and v large.

1.5. Conformal energy and rp-weighted vector field method. We follow [AAG20, Section
5.2] in this part. Here, we choose rH ∈ (M, 2M) and rI > 2M such that r∗(rH) = −r∗(rI). Then
we introduce the corresponding partition of the spacetime region R : R = AH ∪ B ∪ AI , where

AH := R∩ {r ≥ rH}, B := R∩ {rH < r < rI}, AI := R∩ {r ≤ rI}.

See Figure 1. We note that this definition is in view of the Couch-Torrence conformal inversion.

Figure 1. The regions AH,B and AI .
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To obtain an analog of the rp-hierarchy both at the near-infinity region AI and at the near-
horizon region AH, we examine the conformal energy. First, we define NI

τ := Στ ∩ AI and NH
τ :=

Στ ∩ AH. See Figure 2.

Figure 2. The hypersurfaces NI
τ and NI

τ .

Then the conformal energies are given by

Conformal energy near I+ : CNI
τ
[ψ] =

∫
NI

τ

r2 · (∂vψ)2 dωdv

Conformal energy near H+ : CNH
τ
[ψ] =

∫
NH

τ

1

−∂ur
(∂uψ)

2 dωdu.

1

Since Φ in Section 1.3 has mapping property (u, v) 7→ (v, u), r 7→ rM
r−M , and NI

τ 7→ NH
τ , a direct

calculation implies that CNI
τ
[ψ] 7→ CNH

τ
[ψ] under Φ, where we also use D = −∂ur = (1 −M/r)2.

Moreover, one may worry about the degeneracy in the energy definition near H+. In fact, the
degeneracy is only because of the poor choice of coordinates and we notice that

(∂uψ)
2(−∂ur)−1 du

is invariant under reparametrization of the double null gauge and is equal to (Y ψ)2 dr in the ingoing
Eddington-Finkelstein coordinates (v, r), which is manifestly nondegenerate.

This correspondence suggests that the rp-hierarchy near H+ should be of the following form
(together with the standard rp-hierarchy near I+) :

(1.14)

∫
C(τ2)

rp(∂vψ)
2 dv +

∫
C(τ2)

(r −M)2−p (∂uψ)
2

−∂ur
du

≲
∫
C(τ1)

rp(∂vψ)
2 dv +

∫
C(τ1)

(r −M)2−p (∂uψ)
2

−∂ur
du+ l.o.t.,∫ τ2

τ1

∫
C(τ)

rp−1(∂vψ)
2 dvdτ ≲

∫
C(τ1)

rp(∂vψ)
2 dv + l.o.t.,(1.15) ∫ τ2

τ1

∫
C(τ)

(r −M)3−p (∂uψ)
2

−∂ur
dudτ ≲

∫
C(τ1)

(r −M)2−p (∂uψ)
2

−∂ur
du+ l.o.t.,(1.16)

where (u, v) denote Eddington–Finkelstein double null coordinates on the domain of outer commu-
nication, τ is proper time along a timelike curve Γ with constant area-radius, τ1 ≤ τ2, p ∈ [0, 3) in

1The conformal energy CNH
τ

in [AAG20, (5.12)] is different from the one in [AKU24, Section 1.2.1] up to a factor

of r2. It does not affect the conformality but we adopt the convention in [AKU24, Section 1.2.1] so that the role of
Couch-Torrence inversion is clearer.
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(1.14), p ∈ [1, 3) in (1.15) and (1.16), “l.o.t.” denotes terms lower in the p-hierarchy, the foliations
C(τ) and C(τ) are defined pictorially in Figure 3 below. Using pigeonhole principle, (1.14), (1.16)

I +

i+

i−

i0

Γ I
−

H
+

H −

C
(τ 1
)

C
(τ 2
)

C
(τ
1 )

C
(τ
2 )

Figure 3. A Penrose diagram of extremal Reissner–Nordström depicting the folia-
tions C(τ) and C(τ) used in the estimates (1.14)–(1.16). The region of integration
in (1.15) and (1.16) is shaded darker.

and (1.16) can be used to prove the energy decay estimate∫
C(τ)

rp(∂vψ)
2 dv +

∫
C(τ)

(r −M)2−p (∂uψ)
2

−∂ur
du ≤ C⋆τ

−3+δ+p,

for every p ∈ [0, 3− δ] and τ ≥ τ0, where C⋆ is a constant depending on δ and the data at τ = τ0.
This estimate can then be used to prove pointwise decay of ψ itself. Note that the non-degenerate
energy when p = 2 on C(τ) decays only like τ−1+δ, which is in contrast with the subextremal case

Remark 1.1. The decay of τ−1+δ is sharp for generic data. See [AAG17, Theorem 3.2], where it is
shown that the rate of decay of flux is not integrable in time when the Aretakis charge is nonzero.
This rate turns out to persist in the nonlinear theory under a quantitative nonvanishing condition
of asymptotic Aretakis charge (see [AKU24, Section 9.3]) and this slow decay is responsible for
many of the technical difficulties.

2. Setup of the problem

We refer to the Penrose diagram (Figure 4) of the setup of the main results. An overview of
what we need is described as follows :

• Gauge : An “initial data normalized gauge” (û, v̂) (see Section 2.1) and a renormalization
(uτf , v) = Φτf (û, v̂) (see Section 2.2) are used. Note that (û, v̂) are regular across the
event horizon and will be used to establish : existence of black hole regions, absence of
trapped surfaces (weak cosmic censorship related statements in the main theorem) and
Aretakis instability. On the other hand, (uτf , v) only makes sense in the domain of outer
communication and will be used to establish stability results in the region described in
Figure 4.

We also remark that the gauge (uτf , v) is teleologically defined on the bootstrap region

D̂τf . Therefore, an important final step when taking τf → ∞ is to prove that we can define
a unique “final background solution” which we converge to and an “eschatological gauge”
Φ∞ (i.e., final teleological gauge) in which we converge to it. This gauge is defined on
D∞. (See Section 2.2) The regularity of the limiting gauge is actually related to the decay
assumptions on initial data.
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• Modulation : While our bootstrap argument is performed continuously in time, the choice of
allowed modulation parameters α is only decided when τf is dyadic, i.e., a power of 2. This
approach is motivated by the purely dyadic approach of Dafermos–Holzegel–Rodnianski–
Taylor in [DHRT24] and turns out to be quite fortuitous compared to the continuous in
time modulation theory employed in [DHRT21].

• Energy estimates : The energies are defined akin to the fixed background case above.
However, in the near horizon region, the dynamical r and the background r̄ need to be
distinguished. See Remark 2.7.

• Estimates for the geometric quantities.
• Aretakis instability : Instead of establishing a conserved quantity (the Aretakis charge) as
in the fixed ERN case, a notion called the asymptotic Aretakis charge is introduced in the
dynamical setting. What is shown is that

∂v(Y ψ|H+) = O(ϵ2τ−2+δ),

where the rate is integrable in τ . Here, Y := (∂ur)
−1∂u is gauge invariant null derivative

transversal to H+.

2.1. Seed data and characteristic initial data. Bifurcate characteristic seed data for the
spherically symmetric Einstein-Maxwell-neutral scalar field model on Cout ∪ C in is a quadruple
S := (ϕ̊,Λ = r0, ϖ0, e) consisting of

ϕ̊ := ϕ|Cout∪Cin , r0 := area-radius of Cout ∪ C in,

ϖ0 := ϖ|Cout∪Cin , e := the constant charge of the solution.

On the other hand, a smooth (bifurcate) characteristic initial data set for the Einstein–Maxwell-

scalar field system consists of a triple of smooth functions r̊, Ω̊2, ϕ̊ : C → R with r̊ and Ω̊2 positive,
together with a real number e. The functions r̊, Ω̊2, and ϕ̊ are assumed to satisfy (1.5) on [U0, U1]×
{V0} and (1.6) on {U0} × [V0, V1].

Given U0 < U1 and V0 < V1, let

C(U0, U1, V0, V1) := ({U0} × [V0, V1]) ∪ ([U0, U1]× {V0}) ⊂ R1+1,

R(U0, U1, V0, V1) := [U0, U1]× [V0, V1] ⊂ R1+1.

For any f : C → R, we define fout := f |{U0}×[V0,V1] and fin := f |[U0,U1]×{V0}

Proposition 2.1 (Generating characteristic initial data from seed data). Let S = (ϕ̊, r0, ϖ0, e) be a
suitable seed data set (close to (0, 100M0,M0, e0 defined later) on C(U0, U1, V0, V1) with U1−U0 < r0.

Then there exists a unique characteristic initial data set (̊r, Ω̊2, ϕ̊, e) on C(U0, U1, V0, V1) such that

the maximal development (Qmax, r,Ω
2, ϕ, e) of (̊r, Ω̊2, ϕ̊, e) has the following properties:

(1) r(U0, V0) = r0,
(2) ϖ(U0, V0) = ϖ0,
(3) ν = −1 on [U0, U1]× {V0}, and
(4) λ = 1 on {U0} × [V0, V1].

We refer to characteristic data obtained from S in this manner as gauge-normalized characteristic
data determined by S.

Proof. Note that ϕ̊ and e are already given in the seed data and hence we only need to generate r̊
and Ω̊2. For (u, v) ∈ [U0, U1]× [V0, V1], set

r̊in(u) := r0 − u+ U0, r̊out(v) := r0 + v − V0,
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and then (1), (3) and (4) are satisfied. It is then motivated from Raychaudhuri’s equations (1.5)
and (1.6) that we choose

Ω̊2
in(u) := Ω̊2

0 exp

(
−
∫ u

U0

r̊in(∂uϕ̊in)
2 du′

)
, Ω̊2

out(v) := Ω̊2
0 exp

(∫ v

V0

r̊out(∂vϕ̊out)
2 dv′

)
,

2 where the freedom to choose the constant Ω̊2
0 allows us to make sure that (2) is satisfied. Namely,

we choose Ω̊2 so that

ϖ0 =
r0
2
(1− 4

Ω̊2
0

) +
e2

2r0

thanks to (1.9) and the definition of renormalized Hawking mass. Note that when the seed data is

close to ERN (0, 100M0,M0, e0) given below, Ω̊2
0 > 0.

Assembling these functions on C together will produce a characteristic data set (̊r, Ω̊2, ϕ̊, e). □

Fix a mass parameter M0 > 0 and let e0 satisfy |e0| = M0. To initiate the study of stabil-
ity, we consider perturbations of the bifurcate cone in ERN solution with parameters (M0, e0)
with bifurcation sphere at r = 100M0 satisfying M0 = |e0|. Namely, we consider the seed data
(0, 100M0,M0, e0), which corresponds to ERN with parameters (M0, e0) and bifurcation sphere
area-radius 100M0.

We set U∗ := 99.5M0 and denote

Ĉ := C(0, U∗, 0,∞) = C in ∪ Cout

denote the bifurcate null hypersurface on which we pose our data. We denote the null coordinates
on Ĉ by û and v̂. In view of Proposition 2.1, (û, v̂) are “initial data normalized” coordinates such
that ∂ûr = −1 on C in and ∂v̂r = 1 on Cout. In particular, û will be regular across the event horizon.

Remark 2.2. It is usually not easy to establish stability in the “initial data normalized” gauge
û and v̂. They will be renormalized later in the proof. See Section 2.2. However, the “initial
data normalized” gauge is indispensable when we consider the difference of two solutions, since the
difference of data (which is coordinate dependent!) is originally given in these coordinates.

To characterize the perturbation, we consider the seed data norm

D ≈ |r0 − 100M0|+ |ϖ0 −M0|+ |e− e0|+ sup
Cin

(
|ϕ|+ |∂ûϕ|

)
+ sup

Cout

(
|ψ|+ |r2∂v̂ψ|

)
and define a master smallness parameter ϵ ≥ D. Precisely, given S = (ϕ̊,Λ0, ϖ0, e), the norm is
given by

D[S] := |Λ− 100M0|+ |ϖ0 −M0|+ |e− e0|+ sup
Cin

(
|ϕ̊in|+ |∂ûϕ̊in|

)
+ sup

Cout

(
(1 + v̂)|ϕ̊out|+ (1 + v̂)2|∂v̂ϕ̊out|+ (1 + v̂)2|∂v̂(v̂ϕ̊out)|

)
.

We claim that with seed data close to (0, 100M0,M0, e0), the evolution will behave nicely in view
of Lemma 2.3. Moreover, Figure 4 illustrates the regions of interests. For the evolution (an ERN)

from the seed data (0, 100M0,M0, e0) on Ĉ, we have that the event horizon corresponds to

(2.1) ûH+,0 := 99M0

in the (û, v̂) gauge.

2It seems that [AKU24] made some typos in their proof of this proposition.
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I +

i+

i−

i0

BH

CH +

Γ

I
−

H
+

H −

r
=
M

r
=

0

r
=
M

C o
ut

C
in

Figure 4. A Penrose diagram of (one period of) the maximally extended extremal
Reissner–Nordström solution. The union of the two darker shaded regions is the
domain of dependence of the bifurcate null hypersurface Cout ∪ C in and represents
the solution we are perturbing around in the main theorem. We prove stability of
the medium gray colored region.

Lemma 2.3. There exists an ϵloc > 0 depending only on M0 such that if S is a seed data set for
which

D[S] ≤ 3ϵloc,

then the maximal globally hyperbolic development (Q̂max, r,Ω
2, ϕ, e) of S has ∂ûr < 0 everywhere

on Q̂max.

Definition 2.4. Let M0 > 0. We define M0 to be the set of all seed data with mass M0. The
moduli space of seed data centered on mass M0 with smallness parameter ϵ is the set

M(ϵ) :=
⋃

S0∈M0:D[S0]≤ϵ

L(S0, ϵ),

where

L(S0, ϵ) := {S0(α) : α ∈ [−2ϵ, 2ϵ]}, S0(α) := (ϕ̊,Λ,M0 + α, e), S0 := S0(0) ∈ M0.

We endow M(ϵ) with the metric space topology associated to the norm D. Here, M0 is a
codimension-one affine subspace of the vector space of seed data and L(S0, ϵ) is a line segment.

2.2. The geometric setup for the stability statement. In this subsection, we introduce a
renormalization of the “initial data normalized” gauge. Consider ϵloc defined in Lemma 2.3. Let
S ∈ M(ϵ) with 0 < ϵ ≤ ϵloc.

We define the set

Γ := {r = Λ}.

This is clearly a timelike curve near Ĉ for ϵ sufficiently small and we will verify in the course of
the proof of the main theorem that Γ is an inextendible timelike curve in Q̂max. Assuming for the
moment that this is the case, we may parametrize Γ by its proper time τ , which we normalize to
start at 1 at Γ∩Ĉ. We write the components of Γ as Γ(τ) = (Γû(τ),Γv̂(τ)) in the (û, v̂) coordinates

on Q̂max.
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v
=
0 u τ f

=
0

Γ

κτf = 1 γτf = −1

C
τ f
u
, E
τ f
p

C τ
fv , E τ

fp

r̄τf (Γ(τf )) = Λ

H
τ f
u
,F
τ f H τ

fv

F τ
f

Figure 5. A Penrose diagram showing the gauge conditions, null hypersurfaces,
and energies in our bootstrap domain Dτf . The function τ measures advanced time
to the left of Γ and retarded time to the right of Γ.

We now wish to define a new gauge such that κ and γ are normalized along specific curves,
respectively. See Figure 5. Note that we need to make a series of assumptions in order to define
this gauge and these assumptions will be formalized as bootstrap assumptions later.

For τf ∈ [1,∞) such that [1, τf ] lies in the domain of definition Γ, we define

D̂τf := [0,Γû(τf )]× [0,Γv̂(τf )].

Assuming that γ̂ < 0 on the final ingoing cone in D̂τf (i.e., γ̂ < 0 when v̂ = Γv̂(τf )) and κ̂ > 0

on Γ ∩ D̂τf . Then it implies that the two functions uτf : [0,Γû(τf )] → R and v : [0,Γv̂(τf )] → R,
defined via

uτf (û) := −
∫ û

0
γ̂(û′,Γv̂(τf )) dû

′,

v(v̂) :=

∫ v̂

0
κ̂(Γû((Γv̂)−1(v̂′)), v̂′) dv̂′,

are strictly increasing on their domains, respectively. Therefore, they can be assembled into a map

Φτf : D̂τf → R2, (û, v̂) 7→ (uτf (û), v(v̂)),

and it is a diffeomorphism onto its image. We denote the image of Φτf by Dτf , which comes

equipped with the double null coordinates (uτf , v) = Φτf (û, v̂). Let Φ̂τf denote the inverse of Φτf .

In the (uτf , v) coordinate system, the solution (r, Ω̂2, ϕ, e) is given by (rτf ,Ω
2
τf
, ϕτf , e), where

rτf := r ◦ Φ̂τf , ϕτf := ϕ ◦ Φ̂τf , Ω2
τf

:=
1

u′τf ◦ u−1
τf

1

v′ ◦ v−1
Ω̂2 ◦ Φ̂τf .

Indeed,

Ωτf (uτf , v)
2 duτf dv = (Ω2

τf
◦ Φτf )u

′
τf
(û)v′(v̂) dû dv̂.

In view of

∂ûuτf = −γ̂(û,Γv̂(τf )), ∂v̂v = κ̂(Γû((Γv̂)−1(v̂)), v̂),

we know that

γτf |v̂=Γv̂(τf )
=

∂uτf
r

1− 2m
rτf

∣∣∣∣∣∣
v̂=Γv̂(τf )

= (∂ûuτf )
−1γ̂(û,Γv̂(τf )) = −1, κτf (û, v̂)|Γ =

∂vr

1− 2m
rτf

∣∣∣∣∣∣
(û,v̂)=(Γû((Γv̂)−1(v̂)),v̂)

= 1.
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This verifies the normalization shown in Figure 5.

Remark 2.5. The motivation of this normalization is natural due to (1.13) in the exact ERN
setting. However, it is in contrast with the future-normalized coordinates in [LO19b, Section 5.1]
in the subextremal case. In [LO19b], instead of normalizing along Γ, they normalize on the final
outgoing cone as well. These future normalized coordinates are actually pretty natural to use for
a stability result. However, closing the argument with such a gauge requires redshift estimates.
Heuristically, in view of the asymptotic stability result that we need to prove, the final outgoing
cone will finally converge to H+. In order to take advantage of the normalization, one would like to
integrate geometric quantities along the final outgoing cone, on which the scalar field estimates are
unfavorable in the extremal case. In [LO19b], this normalization works out thanks to the red-shift
estimates.

On the other hand, in the companion paper concerning the interior of black holes, two additional
coordinates are defined adapted to CH+ and H+, respectively. See [LO19a, Section 5.1], where
one adapted to H+ is regular across H+. However, the regularity and its definition relies on the
subextremality, which could not be generalized to ERN. Therefore, one expects that redshift effects
play an important role when one wants to close the bootstrap argument.

We also remark that the gauge choice is also different from [DHRT21], where two gauges I+-
gauge and H+-gauge are chosen.

In the (uτf , v) coordinate system, we write the coordinates of Γ as Γ(τ) = (Γuτf (τ),Γv(τ)). We

will frequently omit the subscript τf on uτf and (rτf ,Ω
2
τf
, ϕτf , e) when it is clear that τf has been

fixed.
Some basic properties are then derived in [AKU24, Section 5.2.3] based on the bootstrap as-

sumptions. In particular, we wish to ensure that

Γ̇u(τ) ∼ Γ̇v(τ) ∼ 1

for τ ∈ [1, τf ] when designing the bootstrap assumptions. Here, τ is used for the proper time
parametrization of Γ, i.e.,

(2.2) g(Γ̇, Γ̇) = −1,

where ˙ is used to denote d
dτ .

(2.3) suggests that to define a continuous function τ = τ(u, v) on Dτf (this is a slight abuse of
notation) implicitly by :

τ(u, v) :=

{
τ : Γu(τ) = u if r(u, v) ≥ Λ

τ : Γv(τ) = v if r(u, v) < Λ
.

Namely, this is obtained by extending the proper time τ to a function on Dτf by setting it equal to
proper time along Γ and then declaring it to be constant along ingoing cones to the left of Γ and
constant along outgoing cones to the right of Γ.

Thanks to (2.3), the function τ measures (approximately) Bondi time in the region near null
infinity and (approximately) Eddington–Finkelstein time near the event horizon. More precisely,
(2.3), together with the fundamental theorem of calculus and the change of variables formula,
implies that

τ(u1, v)− τ(u2, v) ∼ u1 − u2

for (u1, v), (u2, v) ∈ Dτf ∩ {r ≥ Λ} and

τ(u, v1)− τ(u, v2) ∼ v1 − v2
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for (u, v1), (u, v2) ∈ Dτf ∩ {r ≤ Λ}. Moreover, for any η > 1 and 1 ≤ τ1 ≤ τ2 ≤ τf , it holds that∫
Hv∩{τ1≤τ≤τ2}

τ−η du ≲η τ
−η+1
1 ,∫

Hu∩{τ1≤τ≤τ2}
τ−η dv ≲η τ

−η+1
1 .

Now we define the region D∞ (the region as τf → ∞) equipped with the “eschatological gauge”.
For the seed data sets we will ultimately consider, Γ exists and remains timelike for all τ ∈ [1,∞).

We then define a number

ûH+ := lim
τ→∞

Γû(τ).

Since τ 7→ Γû(τ) is monotone increasing, the existence of this limit is automatic and we will show
the strict inequality

ûH+ < U∗,

see already Lemma 3.7. We then set

D̂∞ := [0, ûH+)× [0,∞).

We will also show that there exists a surjective, strictly increasing C1 function u∞ : [0, ûH+) →
[0,∞), such that, if we use (u∞, v) as coordinates on D̂∞, then ∂u∞r → −1 at null infinity I+. We

denote D̂∞ by D∞ under this change of coordinates.

2.3. Anchored extremal Reissner–Nordström solutions and definitions of the energies.
Let (r,Ω2, ϕ, e) be a spherically symmetric solution of the Einstein–Maxwell-scalar field system
defined on a coordinate rectangle Dτf with gauge conditions as explained in Section 2.2.

2.3.1. The case τf < ∞. First, assume τf < ∞. We define the τf -anchored background solution
to be the extremal Reissner–Nordström metric (r̄τf , Ω̄

2
τf
) with parameters M = |e| in Eddington–

Finkelstein double null form which is uniquely determined by

r̄τf (Γ(τf )) = Λ.

(This is done by simply changing the origin of the double-null coordinates, see [AKU24, Lemma
2.2].)

Given the anchored background solution we now adopt the following notation:

• Barred quantities such as λ̄τf , ϖ̄τf =M , or κ̄τf = 1 correspond to those of (r̄τf , Ω̄
2
τf
).

• Differences are denoted with a tilde, such as r̃τf := rτf − r̄τf , ϖ̃τf := ϖτf −M , or γ̃τf :=
γτf + 1.

2.3.2. The case τf = ∞. In the proof of the main theorem, we will send τf → ∞ and thus need to
extend this definition to the case when τf = ∞. Instead of trying to anchor directly “at τf = ∞,”

it is much easier to simply anchor the background solution at Γ ∩ Ĉ = {(0, 0)} and then show that
it is compatible with directly anchoring at τf = ∞.

We define the ∞-anchored background solution to be the unique extremal Reissner–Nordström
metric (r̄∞, Ω̄

2
∞) with parameters M = |e| in Eddington–Finkelstein double null form with the

property that

r̄∞(0, 0) = r̄⋆ := lim
τf→∞

r̄τf (0, 0),

see already Figure 6. It turns out that this limit actually exists. We will also show that this
background solution is anchored “at τf = ∞” in the sense that

lim
τf→∞

r̄∞(Γ(τf )) = Λ.
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2.3.3. Energy fluxes in the dynamical setting. We may now define the fundamental weighted energy
norms for the scalar field. Some of the norms will depend explicitly on the background solution r̄τf
in a nontrivial manner.

Definition 2.6 (A rough statement of [AKU24, Definition 3.5]). Let (rτf ,Ω
2
τf
, ϕτf , e) be defined on

Dτf with teleologically normalized coordinates (uτf , v), where τf ∈ [1,∞]. Let r̄τf be the associated
τf -anchored background solution. Let

ψτf := rτfϕτf

denote the radiation field of ϕτf . For τ, τ
′ ∈ [1, τf ], p ∈ [0, 3), and (u, v) ∈ Dτf , we define:

(1) The (r̄ −M)2−p-weighted flux to the horizon:

Eτf
p (τ) :=

∫
C

τf (τ)

(
(r̄τf −M)2−p

(∂uτf
ψτf )

2

−ν̄τf
+ · · ·

)
duτf .

(2) The rp-weighted flux to null infinity:

Eτf
p (τ) :=

∫
C

τf (τ)

((
rpτf (∂vψτf )

2 + · · ·
)
dv.

Remark 2.7. It is mentioned in [AKU24, Remark 1.5] that the usage of r̄τf −M is crucial. Here is
an attempt to conclude why this is the case and what are the bootstrap assumptions we need :

• r̄ −M ≥ 0 has a sign, which is used, for instance, in [AKU24, Proof of Lemma 6.6]. This
condition holds according to how we anchor our background ERN and [AKU24, Lemma
2.2].

• ν̄ = ∂ur̄ = (1− M
r̄ )

2 has explicit cancellation with (r̄ −M)-weight in the energy norms.
• The previous point also suggests the need of an estimate of |νν̄ − 1| in the bootstrap as-
sumptions since to pass a geometric computation in dynamical variables to the background
variable in the energy norms, one needs

(∂uψ)
2

−ν
= (

ν̄

ν
− 1)

(∂uψ)
2

−ν̄
+

(∂uψ)
2

−ν̄
.

For the same reason, it is natural to require an estimate of |r − r̄|.
• Besides, the requirement of a quantitative decay of |ϖ −M | in the bootstrap assumptions
comes from the nested bootstrap parameter set Ai’s and will be clear in the following.

2.4. The bootstrap and modulation parameter sets. We define in this section two sets of
parameters: a bootstrap set B containing the τf ’s for which we assume the solution exists on Dτf
and satisfies certain properties, and a sequence of compact intervals

A0 ⊃ A1 ⊃ A2 ⊃ · · ·

of α parameters which are used in the modulation argument to hit extremality.
We first set

A0 := [|e| − |e0| − ϵ3/2, |e| − |e0|+ ϵ3/2],

but the sets Ai for i ≥ 1 will only be properly defined in the course of the proof of main theorem.
It is convenient to define the function I(τf ) := ⌊log2 τf⌋, i.e., the largest integer such that

2I(τf ) ≤ τf .

Definition 2.8 (A rough version of [AKU24, Definition 4.1]). Let A ≥ 1, 0 < ϵ ≤ ϵloc, and S0 ∈ M0

with D[S0] ≤ ϵ. Using A to denote the bootstrap constant and ϵ to denote the smallness inherited
from initial data, then B(S0, ϵ, A) denotes the set of bootstrap times τf ∈ [1,∞) such that :
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• (Existence of nested intervals for the parameter α.) For every i ∈ {0, 1, . . . , I(τf )}, there
exist numbers α±

i ∈ [|e| − |e0| − ϵ3/2, |e| − |e0|+ ϵ3/2], which may depend on S0 and ϵ, but

are independent of A and τf , with α
−
i < α+

i and α±
0 = |e|− |e0|± ϵ3/2, such that the nesting

condition Ai+1 ⊂ Ai holds, where Ai := [α−
i , α

+
i ].

• Given α ∈ AI(τf ), let (Q̂max, r, Ω̂
2, ϕ, e) denote the maximal development of the modu-

lated seed data S0(α) in the initial data gauge (û, v̂) determined by Proposition 2.1 and
Lemma 2.3.

• (Existence of the timelike curve r = Λ.) For every α ∈ AI(τf ), there exists a timelike curve

Γ : [1, τf ] → Q̂max, which is the unique smooth solution of the ODE

d

dτ
(Γû,Γv̂) =

(√
1− µ

−2ν̂
,

√
1− µ

2λ̂

)∣∣∣∣
Γ(τ)

,

with initial condition Γ(1) = (0, 0). (As a consequence of the global hyperbolicity, J+(Γ(1))∩
J−(Γ(τf )) = D̂τf := [0,Γû(τf )]× [0,Γv̂(τf )] ⊂ Q̂max.)

• (Saturated estimate on dyadic scale for renormalized mass.) For every i ∈ {0, 1, . . . , I(τf )},
the map

Πi := α 7→ ϖ(Γ(Li))−M, Ai → [−ϵ−3/2L−3+δ
i , ϵ3/2L−3+δ

i ] ⊂ R, Li := 2i

is defined on Ai and is surjective onto [−ϵ−3/2L−3+δ
i , ϵ3/2L−3+δ

i ].

• (Sign condition.) For every α ∈ AI(τf ), γ̂ is strictly negative on [0,Γû(τf )] × {Γv̂(τf )} and

κ̂ is strictly positive on Γ. Therefore, the teleologically normalized coordinates (uτf , v) are

defined on D̂τf .

• (Bootstrap for the geometry.) A quantitative decay statement of |
ντf
ν̄τf

− 1|, |rτf − r̄τf |
and |ϖτf − M | as mentioned in Remark 2.7 as a bootstrap assumption that needs an
improvement.

• (Bootstrap for the scalar field.) A quantitative decay statement of p-weighted energy flux
Eτf
p (τ), Eτf

p (τ) as another bootstrap assumption that needs an improvement.

Remark 2.9. In the existence of the timelike curve r = Λ, we refer to the proof of Lemma 2.12 for
the derivation of the ODE.

Remark 2.10. I feel that the saturated estimate on dyadic scale for renormalized mass is somehow
similar to the trapping assumption in [Tan24]. However, with this nested set consideration, [AKU24]
is only able to show that there exists a nonempty set of α and name this the so-called “codimension-
one” result. See [AKU24, Remark 8.7].

Remark 2.11 (Proof of nonlinear stability). Besides improving the two sets of estimates, we com-
ment on the continuity argument on B.

• By choosing |τf − 1| small, B ̸= ∅.
• The openness of B consists of a local-wellposedness theory of characteristic initial data
problem and the simple property that I(τf + η) = I(τf ) for η sufficiently small. See
[AKU24, Section 8.1.1].

• The closedness of B is usually trivial (in view of the quantitative estimates part). It is
slightly nontrivial for the construction of nested intervals Ai’s. Let τnf ∈ B(S0, ϵ, A0) be a
strictly increasing sequence of times with finite limit τ∞f as n → ∞. We aim to show that

τ∞f ∈ B(S0, ϵ, A0).
When τ∞f is not dyadic, it is trivial based on geometric estimates. When τ∞f is dyadic,

I := I(τ∞f ) > I(τnf ) for any finite n. This requires us to construct AI . Here, we need to use

intermediate value theorem and hence the construction is implicit. See [AKU24, Lemma
8.4].
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Lemma 2.12. For any A ≥ 1, ϵ sufficiently small, τf ∈ B, and α ∈ AI(τf ), it holds that

(2.3) Γ̇u(τ) ∼ Γ̇v(τ) ∼ 1

for τ ∈ [1, τf ].

Proof. Since r is constant along Γ, we have νΓ̇u + λΓ̇v = 0 on Γ. The proper time condition (2.2)
can be written as

4νλ

1− µ
Γ̇uΓ̇v = −1,

which implies that

Γ̇u =

√
1− µ

−2ν
, Γ̇v =

√
1− µ

2λ
on Γ.

By the gauge condition λ = κ(1 − µ)|Γ = 1 − µ|Γ ∼ 1. Moreover, we have (3.6) and the result
follows. □

3. Main theorem and its proof

3.1. Detailed statements of the main theorems. We can now state our main theorems using
the notation and definitions.

3.1.1. Nonlinear stability.

Theorem 3.1 (Stability of extremal Reissner–Nordström in spherical symmetry). Let M0 > 0,
e0 ∈ R with |e0| =M0, and let δ be an arbitrary parameter satisfying

0 < δ <
1

100
.

There exists a number ϵstab(M0, δ) > 0, a set Mstab ⊂ M, and a constant C(M0, δ) (which is
implicit in the notation ≲ below) with the following properties:

(1) Mstab is “codimension-one” inside of M(ϵ): For every 0 < ϵ ≤ ϵstab and S0 ∈ M0 with

D[S0] ≤ ϵ, it holds that

(3.1) Mstab ∩ L(S0, ϵ) ̸= ∅.

(2) Existence of a black hole region: Let (Q̂max, r,Ω
2, ϕ, e) be the maximal development of a

seed data set in the intersection (3.1). Then Q̂max = [0, U∗] × [0,∞). There exists a
ûH+ ∈ (0, U∗) such that r(û, v̂) → ∞ as v̂ → ∞ for every for every û ∈ [0, ûH+) and
r(ûH+ , v̂) → |e| as v̂ → ∞. Therefore, [0, ûH+) × {v̂ = ∞} may be regarded as future null
infinity I+, there exists a nonempty black hole region

BH := Q̂max \ J−(I+) = [ûH+ , U∗]× [0,∞),

and

H+ := ∂J−(I+) = {ûH+} × [0,∞)

is the event horizon. Moreover, future null infinity is complete in the sense of Christodoulou.
There exist C1 double null coordinates (u∞, v) on the domain of outer communication
[0, ûH+) × [0,∞) such that u∞ is Bondi normalized, i.e., the event horizon H+ can be
formally regarded as {u∞ = ∞} and ∂u∞r → −1 along any outgoing cone in the domain of
outer communication.

(3) Orbital stability: There exists an ∞-anchored extremal Reissner–Nordström solution r̄∞ in
the (u∞, v) coordinates whose parameters satisfy

|M −M0|+ |e− e0| ≲ ϵ.
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=
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}
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{u∞
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{û
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U ∗
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Γ

r̄ = r̄⋆

no trapped surfaces

κ∞ = 1

Figure 6. A Penrose diagram depicting the maximal development of seed data
lying in Mstab.

Relative to this background solution, the p = 3 − δ energy of the scalar field is bounded by
its initial value,

(3.2) sup
τ∈[1,∞)

(
E∞
3−δ(τ) + E∞

3−δ(τ)
)
≲ E∞

3−δ(1) + E∞
3−δ(1),

and the scalar field is pointwise bounded in C1 in the domain of outer communication in
terms of its initial values,

(3.3) sup
J−(I+)

(
|rϕ|+ |r2∂v̂ψ|+ |r2∂v̂ϕ|+

∣∣∣∣∂ûψ−ν̂

∣∣∣∣+ ∣∣∣∣r∂ûϕ−ν̂

∣∣∣∣)
≲ sup

J−(I+)∩Ĉ

(
|rϕ|+ |r2∂v̂ψ|+ |r2∂v̂ϕ|+

∣∣∣∣∂ûψ−ν̂

∣∣∣∣+ ∣∣∣∣r∂ûϕ−ν̂

∣∣∣∣) .
The right-hand side of (3.2) is ≲ ϵ2 and the right-hand side of (3.3) is ≲ ϵ.

(4) Asymptotic stability: The geometry decays towards the ∞-anchored extremal Reissner–
Nordström solution in the following sense:

|γ∞ + 1| ≲ ϵ2r−1τ−3+δ

holds on D∞ ∩ {r ≥ Λ}, ∣∣∣∣ν∞ν̄∞ − 1

∣∣∣∣ ≲ ϵ2τ−1+δ

holds on D∞, and

|r − r̄∞| ≲ ϵ2τ−2+δ, |λ∞ − λ̄∞| ≲ ϵ2τ−2+δ, |κ∞ − 1| ≲ ϵ2τ−1+δ, |ϖ −M | ≲ ϵ2τ−3+δ

hold on D∞, up to and including the event horizon H+. The scalar field decays to zero in
energy norm,

E∞
p (τ) + E∞

p (τ) ≲ ϵ2τ−3+δ+p

for every τ ∈ [1,∞) and p ∈ [0, 3− δ] and its amplitude decays to zero pointwise,

|(r̄∞ −M)1/2ϕ| ≲ ϵτ−3/2+δ/2, |ψ| ≲ ϵτ−1+δ/2

on D∞, up to and including the event horizon H+.
(5) Absence of trapped surfaces: On the spacetime (Q̂max, r, Ω̂

2), it holds that ν̂ < 0, i.e., there
exist no antitrapped spheres of symmetry. Moreover, we have the following dichotomy:
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(a) λ̂ ≥ 0 on Q̂max, i.e., there exist no (strictly) trapped symmetry spheres.

(b) If λ(û0, v0) = 0 for some (û0, v̂0) ∈ Q̂max, then û0 = ûH+ and ϕ(ûH+ , v̂) = 0 for all
v ∈ [v0,∞).

3.1.2. The Aretakis instability. Let

Y := ν̂−1∂û

denote the gauge-invariant null derivative which is transverse to the event horizon H+, analogous
to ∂r in ingoing Eddington–Finkelstein coordinates (v, r) in Reissner–Nordström.

Theorem 3.2 (The Aretakis instability for dynamical extremal horizons). Let Mstab denote the
subset of the moduli space M given by Theorem 3.1 consisting of seed data asymptotically converging
to extremal Reissner–Nordström in evolution. Then the following holds:

(1) For any solution (Q̂max, r, Ω̂
2, ϕ, e) arising from S ∈ Mstab, the “asymptotic Aretakis charge”

H0[ϕ] := lim
v̂→∞

Y ψ|H+

exists and it holds that

|Y ψ|H+(v̂)−H0[ϕ]| ≲ ϵ3(1 + v̂)−1+δ,∣∣RY Y |H+(v̂)− 2M−2
(
H0[ϕ]

)2∣∣ ≲ ϵ2(1 + v̂)−1+δ/2,

where ϵ ≥ D[S].
(2) The set

M ̸=0
stab := {S ∈ Mstab : H0[ϕ] ̸= 0}

has nonempty interior as a subset of Mstab.

(3) For any solution arising from data lying in M ̸=0
stab, it holds that∣∣Y 2(rϕ)|H+(v̂)

∣∣ ≳ |H0[ϕ]|v̂,∣∣∇YRY Y |H+(v̂)
∣∣ ≳ (H0[ϕ]

)2
v̂

for v̂ ≳ 1 + |ϵH0[ϕ]
−1|1/(1−δ).

3.2. Completeness of null infinity. We now prove the existence of a black hole region and a
regular event horizon in the maximal development (Q̂max, r, Ω̂

2, ϕ, e) of seed data lying in Mstab.

Proposition 3.3. The maximal development of any seed data lying in Mstab has Q̂max = [0, U∗]×
[0,∞) and there exists a ûH+ ∈ (0, U∗) satisfying

(3.4) |ûH+ − ûH+,0| ≲ ϵ,

where ûH+,0 was defined in (2.1), such that [0, ûH+ ]× [0,∞) ⊂ Q̂max,

lim
v̂→∞

r(û, v̂) = ∞

for every û ∈ [0, ûH+), and

lim
v̂→∞

r(ûH+ , v̂) = lim
v̂→∞

ϖ(ûH+ , v̂) =M = |e|.

Therefore, [0, ûH+)× {v̂ = ∞} may be regarded as future null infinity I+ and

H+ := J−(I+) = {ûH+} × [0,∞)

is the event horizon. The black hole region is

BH := Q̂max \ J−(I+) = [ûH+ , U∗]× [0,∞) ̸= ∅
and future null infinity is complete in the sense of Christodoulou.
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Remark 3.4. Note that this verifies that the limit along event horizon is extremal in the sense that

lim
v̂→∞

ϖ(ûH+ , v̂) = |e|.

This is compatible with the definition of subextremality of [LO19a].

Proof. By the geometric estimates, r is bounded from below on D̂∞ and λ̂ > 0. It follows from the

extension principle [Daf05b] that D̂∞ ⊂ Q̂max, where the closure is taken in the (û, v̂)-plane. By

Lemma 3.7, D̂∞ \ D̂∞ = {ûH+} × [0,∞).
The limit is proved by combining a decay estimates of |r− r̄∞ ◦Φ∞| and the geometry of ERN.
For the estimate (3.4), see Lemma 3.5.

To show that Q̂max contains the rectangle (ûH+ , U∗] × [0,∞), we use the logically independent

fact that λ̂ ≥ 0 everywhere on Q̂max, which will be shown in [AKU24, Section 8.3.5] below. Since r

is bounded below on [0, U∗]× {0}, is it bounded below on Q̂max. The extension principle [Daf05b]

therefore implies that Q̂max = [0, U∗]× [0,∞).
Finally, since r is bounded on H+, completeness of I+ follows from the work of Dafermos

[Daf05c]. □

3.3. Absence of trapped surfaces. We first recall the notions (see [Daf05c]) of apparent horizon

A := {(û, v̂) ∈ Q̂max : λ(û, v̂) = 0},
the regular region or non-trapped region

R := {(û, v̂) ∈ Q̂max : λ(û, v̂) > 0}
and outermost apparent horizon

A′ := {(û, v̂) ∈ A : (û′, v̂) ∈ R for every û′ < û} = {(û, v̂) ∈ Q̂max : λ(û, v̂) = 0 and λ(û′, v̂) > 0 for every û′ < û}.

We observe from (1.10), (1.11) and 1 − µ = −4νλ
Ω2 that if (û, v̂) ∈ R ∪ A, then we have the

monotonicities

(3.5) ∂uϖ(û, v̂) ≤ 0 and ∂vϖ(û, v̂) ≥ 0.

Proof that A′ ⊂ H+: First, it is easy to establish via contradiction that H+ ⊂ R ∪A.
Let (û0, v̂0) ∈ A′.3 By the monotonicities (3.5) and the outermost property of (û0, v̂0), it follows

that M ≥ ϖ(û0, v̂0). (This derivation is akin to [Daf05c, Proof of Lemma 2], one take some
point on I+ with renormalized mass M ′. Then M ′ ≥ M and one can integrate (3.5) to establish
M ′ ≥ ϖ(û0, v̂0). Since any M ′ ≥M works so this proves the inequality.)

We also have 1−µ(û0, v̂0) = 0 thanks to 1−µ = −4νλ
Ω2 . This further implies r(û0, v̂0) = ϖ(û0, v̂0)±√

ϖ(û0, v̂0)2 −M2 by solving r from (1.8) and hence ϖ(û0, v̂0) ≥M . Hence, ϖ(û0, v̂0) =M . Then
plugging back to the solution of r above tells us that r(û0, v̂0) =M .

Since ν = ∂ur < 0 on Q̂max (recall Lemma 2.3), r is strictly decreasing along direction of u,
this in turn implies that (û0, v̂0) ∈ H+. Indeed, suppose that û0 > ûH+ , then M < r(ûH+ , v̂0) <
r(ûH+ , v̂) → M as v̂ → ∞, which is a contradiction. On the other hand, û0 < ûH+ is obviously
false since λ > 0 before H+ (monotonicity in Raychaudhuri). Thus, it follows that (û0, v̂0) ∈ H+.

Moreover, from ∂vr ≥ 0 and r(ûH+ , v̂0) =M = limv̂→∞ r(ûH+ , v̂), we deduce that r(ûH+ , v̂) =M
for all v̂ ≥ v̂0. Hence, {ûH+} × [v̂0,∞) ⊂ A and hence {ûH+} × [v̂0,∞) ⊂ A′.

By Raychaudhuri’s equation (1.6), it follows that ∂vϕ vanishes identically on {ûH+} × [v̂0,∞).
Since ϕ decays pointwisely along H+, ϕ itself vanishes on {ûH+} × [v̂0,∞).

Proof that λ > 0 behind H+: Suppose λ(û0, v̂0) ≤ 0. Then one needs a Taylor expansion of
∂vr in u along H+. The proof goes similarly as the previous one. See [AKU24, Section 8.3.5].

3This hypothesis could be empty.
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3.4. Event horizon and eschatological gauge.

Lemma 3.5. There exists a constant θ ∈ (0, 1) such that for ϵ sufficiently small and τf ∈
B(S0, ϵ, A0), it holds that Γû(τf ) ≤ θU∗.

Proof. Since ∂ûr = −1 on C in and r(0, 0) = Λ, we see that r(Γû(τf ), 0) = Λ − Γû(τf ). Using the
bootstrap assumption of r̃, we then estimate

Γû(τf ) = Λ− r(Γû(τf ), 0) = Λ− r̄τf ◦ Φτf (Γ
û(τf ), 0)− r̃ ◦ Φτf (Γ

û(τf ), 0) = 99M0 +O(ϵ),

which is quantitatively strictly smaller than U∗ =
995
10 M0 for ϵ sufficiently small. □

We first record the existence (definition) of the eschatological gauge Φ∞, which is well-defined

and C1 on D̂∞ :

Proposition 3.6. For (û, v̂) ∈ D̂∞, the limit

Φ∞(û, v̂) := lim
τf→∞

Φτf (û, v̂)

exists and defines a C1 diffeomorphism Φ∞ : D̂∞ → [0,∞)× [0,∞).

First, we observe the following immediate consequence of Lemma 3.5:

Lemma 3.7. The limit ûH+ := limτ→∞ Γû(τ) exists and satisfies ûH+ ≤ θU∗, where θ ∈ (0, 1) is

the constant from Lemma 3.5. Furthermore, D̂∞ = [0, ûH+)× [0,∞).

3.5. Estimates of geometric quantities. We only record one basic estimate and claim that
the estimates of geometric quantities would require to use the gauge renormalization to help us
integrate to get to the quantity at later times.

Lemma 3.8. For any A ≥ 1, ϵ sufficiently small, τf ∈ B, and α ∈ AI(τf ), it holds that

1
2M ≤ ϖ ≤ 2M,

1
2 ≤ ν

ν̄
≤ 2,

λ > 0

in Dτf and

1− µ ≥ 3
4 ,

λ ≥ 1
2 ,

−2 ≤ ν ≤ −1
2 ,(3.6)

in Dτf ∩ {r ≥ Λ}.
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