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1. Introduction

We consider the linear wave equation on R1+d :{
−∂2

t u+∆u = f,

(u, ∂tu)(0) = (u0, u1).
(1.1)

For nice u, by multiplying −∂tu on both sides of (1.1) and integrating by parts, we obtain

∥∇t,xu(T )∥2L2
x
≤ ∥∇t,xu(0)∥2L2

x
+ |⟨∂tu, f⟩L2

tL
2
x
| (1.2)

and hence

∥∇t,xu∥L∞
t L2

x
≤ ∥(u0, u1)∥Ḣ1×L2 + ∥f∥L1

tL
2
x
, (1.3)

which is called the uniform boundedness of energy.

Remark 1.1. For d ≥ 3, this inequality can be made rigorous by simply noticing that Ḣ1 ⊂
L

2d
d−2 and the definition that D ⊂ Ḣ1 is dense. Then for compactly supported initial data, we

can formulate the question by examining the energy estimates for□(χn(x)u) = χn(x)f+∇χn·
∇u+u∆χn, where χn(x) = χ(x/n) and then take the limit. Moreover, for (u0, u1) ∈ Ḣ1×L2,
we can define the solution just by defining it to be the limit of um with initial data (u0,m, u1,m)

giving by the energy inequality. With the embedding Ḣ1 ⊂ L
2d
d−2 in mind, the limit u(t, ·) of

um is a well-defined function in Ḣ1
x.

For d = 1, 2, one may just choose the initial data in H1 × L2 or consider the constants
produced by homogeneous norm carefully.

Date: March 3, 2023.
These notes are taken for the PDE learning seminar in Spring 2023 introducing the integrated local energy

decay estimates (ILED) for wave equation and a spectral theoretic characterization of the ILED. Thanks
Sung-Jin Oh and Ovidiu-Neculai Avadanei for the original version of a set of notes concerning about the
ILED..
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2. Sharp integrated local energy decay estimate for the wave equation

Set
∥u∥LE := sup

j>0
∥⟨r⟩−

1
2u∥L2L2(Rt×Aj), ∥f∥LE∗ :=

∑
j>0

∥⟨r⟩
1
2f∥L2L2(Rt×Aj),

where

Aj :=

{
{x : 2j−1 ≤ |x| < 2j}, j ≥ 1,

{x : |x| ≤ 1}, j = 0.

We prove the following integrated local energy decay estimates in R1+d.

Theorem 2.1. For d ≥ 3, the solution u to linear wave equation (1.1) satisfies

∥∇t,xu∥LE + ∥r−1u∥LE ≲ ∥(u0, u1)∥Ḣ1×L2 + ∥f∥LE∗ . (2.1)

Proof. Step 1 : We claim it suffices to establish the simpler bound

∥∇t,xu∥2L2
tL

2
x([0,T ]×B1)

+∥r−1u∥2L2
tL

2
x([0,T ]×B1)

≲ ∥∇t,xu(T )∥2L2
x
+ ∥∇t,xu(0)∥2L2

x
+

∣∣∣∣⟨β(r)∂ru+
γ(r)

r
u, f⟩L2

tL
2
x

∣∣∣∣ (2.2)

for some β, γ ∈ L∞. Assuming this, the result follows from considering the scaled function
uk = u(2kt, 2kx), which solves □uk = 22kfk and combining with the energy estimates (1.2).
Specifically, due to 2−kAk ⊂ B1, (2.2) implies

∥∇t,xu
k∥2L2

tL
2
x([0,T ]×2−kAk)

+ ∥r−1uk∥2L2
tL

2
x([0,T ]×2−kAk)

≲∥∇t,xu
k(T )∥2L2

x
+ ∥∇t,xu

k(0)∥2L2
x
+

∣∣∣∣⟨β(r)∂ruk +
γ(r)

r
uk, 22kfk⟩L2

tL
2
x

∣∣∣∣ .
Furthermore, thanks to scaling, this implies

2−k∥∇t,xu∥2L2
tL

2
x([0,2

kT ]×Ak)
+ 2−k∥r−1u∥2L2

tL
2
x([0,2

kT ]×Ak)

≲∥∇t,xu(2
kT )∥2L2

x
+ ∥∇t,xu(0)∥2L2

x
+

∫
R

∫
R1+d

|∇t,xu||f |+ |r−1u||f | dx dt.

Combining with the energy estimates (1.2)

∥∇t,xu(T )∥2L2
x
≤ ∥∇t,xu(0)∥2L2

x
+ |⟨∂tu, f⟩L2

tL
2
x
|,

we get

2−k∥∇t,xu∥2L2
tL

2
x([0,2

kT ]×Ak)
+2−k∥r−1u∥2L2

tL
2
x([0,2

kT ]×Ak)

≲ ∥∇t,xu(0)∥2L2
x
+

∫
R

∫
R1+d

|∇t,xu||f |+ |r−1u||f | dx dt.
(2.3)

Now we apply the Cauchy inequality 2ab ≤ δa2+ δ−1b2, and then (2.1) follows by taking the
supremum with respect to T and k ≥ 0.
Step 2 : Set X = φ(r)xj∂j = rφ(r)∂r with β(r) = rφ(r) ∈ L∞. In order to prove (2.2),

we examine these following to terms

⟨Xu, f⟩, ⟨γ(r)
r

, f⟩
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with φ and γ to be determined.
Step 3 : Going forward, ⟨·, ·⟩ denotes ⟨·, ·⟩L2

x
. We compute

⟨Xu,∆u⟩ = −
∫

u∂j
(
xjφ(r)∆u

)
dx = . . . ,

which gives

2⟨Xu,∆u⟩ = ⟨[∆, X]u, u⟩ − ⟨(dφ(r) + rφ′(r))u,∆u⟩. (2.4)

On the other hand, we compute

∆Xu = ∆(rφ(r)∂ru) = ∆φ · (r∂ru) + 2∇φ(r) · ∇(r∂ru) + φ(r)∆(r∂ru) = . . .

=

(
φ′′ +

d+ 1

r
φ′
)
r∂ru+ 2φ′xk∂k∂ru+ φ(r)∆(r∂ru)

and

X∆u = φ(r)xj∆∂ju = φ(r)∆(xj∂ju)− . . . = φ(r)∆(r∂ru)− 2φ(r)∆u.

Then by writing [∆, X]u explicitly, we have

[∆, X]u =

(
φ′′ +

d+ 1

r
φ′
)
r∂ru+ 2φ′(r)r∂2

ru+ 2φ(r)∆u,

which implies

⟨[∆, X]u, u⟩ = −⟨φ′′r∂ru, u⟩ − (d+ 1)⟨φ′∂ru, u⟩ − 2

∫
rφ′(r)|∂ru|2 dx− 2

∫
φ(r)|∇u|2 dx.

On the other hand,

−⟨(dφ(r)+rφ′(r))u,∆u⟩ = (d+1)φ′∂ru, u+⟨φ′′r∂ru, u⟩+d

∫
φ(r)|∇u|2 dx+

∫
rφ′(r)|∇u|2.

Combining these two with (2.5), we get a magic cancellation of bad terms, which gives

2⟨Xu,∆u⟩ = −2

∫
rφ′(r)|∂ru|2 dx+

∫
rφ′(r)|∇u|2 dx+ (d− 2)

∫
φ(r)|∇u|2 dx. (2.5)

By noticing

⟨Xh, h⟩ = −⟨dφ(r) + rφ′(r)

2
h, h⟩,

it follows from a direct integration by parts that∫ T

0

⟨Xu,−∂2
t u⟩ = ⟨Xu,−∂tu⟩|T0 −

∫ T

0

⟨dφ(r) + rφ′(r)

2
∂tu, ∂tu⟩ dt. (2.6)

It follows from (2.5) and (2.6) that

−
∫ T

0

∫
Rd

dφ(r) + rφ′(r)

2
|∂tu|2 dx dt−

∫ T

0

∫
Rd

rφ′(r)|∂ru|2 dx dt

+

∫ T

0

∫
Rd

(
1

2
rφ′(r) +

d− 2

2
φ(r)

)
|∇u|2 dx dt = ⟨Xu, ∂tu⟩|T0 +

∫ T

0

⟨Xu, f⟩ dt.
(2.7)
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Step 4 : First, we write∫ T

0

⟨γ(r)
r

u,−∂2
t u⟩ dt = ⟨γ(r)

r
u,−∂tu⟩|T0 +

∫ T

0

∫
Rd

γ(r)

r
|∂tu|2 dx dt.

Now we compute

⟨γ(r)
r

u,∆u⟩ = −
∫

γ(r)

r
|∇u|2 dx−

∫
γ′(r)

r
u∂ru dx+

∫
γ(r)

r
u∂ru dx.

Then by IBP, we have∫
γ′(r)

r
u∂ru dx = −d− 2

2

∫
γ′(r)

r2
|u|2 dx− 1

2

∫
γ′′(r)

r
|u|2 dx

and ∫
γ(r)

r2
u∂ru dx = −d− 3

2

∫
γ(r)

r3
|u|2 dx− 1

2

∫
γ′(r)

r2
|u|2 dx.

These imply∫ T

0

⟨γ(r)
r

u, f⟩ dt = ⟨γ(r)
r

u,−∂tu⟩|T0 +

∫ T

0

∫
Rd

γ(r)

r
|∂tu|2 dx dt−

∫ T

0

∫
γ(r)

r
|∇u|2 dx dt

+

∫ T

0

∫
Rd

(
d− 3

2

γ′(r)

r2
− d− 3

2

γ(r)

r3
+

1

2

γ′′(r)

r

)
|u|2 dx dt.

(2.8)

Step 5 : From (2.7) and (2.8), we obtain

−
∫ T

0

∫
Rd

dφ(r) + rφ′(r)

2
|∂tu|2 dx dt+

∫ T

0

∫
Rd

(d− 2)φ(r)− rφ′(r)

2
|∇u|2 dx dt

+

∫ T

0

∫
Rd

γ(r)

r
|∂tu|2 dx dt−

∫ T

0

∫
γ(r)

r
|∇u|2 dx dt

+

∫ T

0

∫
Rd

(
d− 3

2
γ′(r)− d− 3

2

γ(r)

r
+

1

2
rγ′′(r)

)
|r−1u|2 dx dt

≲ ⟨Xu+
γ(r)

r
u, ∂tu⟩|T0 +

∫ T

0

⟨Xu+
γ(r)

r
u, f⟩ dt.

(2.9)

We choose φ(r) = β(r)
r

and γ(r) = d−1
2
β(r), then

γ(r)

r
− dφ(r) + rφ′(r)

2
= −γ(r)

r
+

(d− 2)φ(r)− rφ′(r)

2
= −β′(r)

2
.

Now what we need is to choose β ∈ L∞ so that

β′(r) ≥ δ > 0,
d− 3

2
β′(r)− d− 3

2

β(r)

r
+

1

2
rβ′′(r) < −δ < 0 (2.10)

for all |r| ≤ 1 and

β′(r) ≥ 0,
d− 3

2
β′(r)− d− 3

2

β(r)

r
+

1

2
rβ′′(r) ≤ 0 (2.11)

for all r ∈ [0,∞).
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For d ≥ 4, we simply choose β(r) = r+C when |r| ≤ 1 for sufficiently large C since v = r
solves v′ − v

r
. Then β satisfies (2.10) and is positive, so one can then require β slowly grows

to a positive constant function and hence (2.11) holds as well.
For d = 3, we choose β(r) = −r ln(r)+Cr when |r| ≤ 1, so that β′(r) = −(1+ log(r))+C

and rβ′′(r) = 1 where C > 1 is a sufficiently large constant. Moreover, for all r ∈ R+, we
require β′(r) ≤ 0, β′′(r) ≥ 0 and β ∈ L∞, which can be easily made to hold. Then (2.9)
implies (2.2), which completes the proof. □

Remark 2.2. The integrated local energy decay estimates (2.1) fail when d = 1, 2. However,
(2.1) still true if we drop the term ∥r−1u∥LE on the left hand side. We construct an example
explicitly in one dimension. We put

u0,n = χ(
x

n
), u1 = 0, f = 0,

where χ ∈ C∞
c (R) with χ = 1 in [−1

2
, 1
2
] and 0 ≤ χ ≤ 1.

It is easy to notice that

∥u0∥2Ḣ1 =
1

n

∫
|χ′|2 dx.

We can use the d’Alembert’s formula to write out the solution explicitly, which is

u(x, t) =
1

2
(u0(x− t) + u0(x+ t)),

and therefore, it is easy to see

∥r−1u∥LE ≥
∫ ∞

0

∫ 1

0

|u0(r − t) + u0(r + t)|2

(1 + r)3
dr dt ≥ n2

∫ ∞

0

∫ 1
n

0

|χ(r − t) + χ(r + t)|2

(1 + nr)3
dr dt

≳n2

∫ 1− 1
n

0

∫ 1
n

0

1

(1 + nr)3
dr dt ≳ n(1− 1

n
),

which means that the inequality would fail as n goes to infinity.
Moreover, one can predict this failure by the following heuristics.

Remark 2.3. The integrated local energy decay estimates are useful when the initial data
does not have decay as x → ∞. For initial data with sufficient decay, one can use the
rp-method. Note that even for nice initial data, sometimes we still prove ILED first as an
intermediate result and then use the rp-method.

Corollary 2.4. Every solution of (1.1) satisfies

∥∇t,xu∥L∞
t L2

x∩LE + ∥⟨r⟩−1u∥L∞
t L2

x∩LE ≲ ∥∇t,xu(0)∥L2
x
+ ∥f∥L1

tL
2
x+LE∗ . (2.12)

Proof. From an intermediate estiamte (2.3) in the first step of the proof for Theorem 2.1, we
have

∥∇t,xu∥2LE + ∥⟨r⟩−1u∥2LE ≲ ∥∇t,xu(0)∥2L2
x
+

∫
R

∫
R1+d

|∇t,xu||f |+ |r−1u||f | dx dt.

Thanks to the energy estimates (1.2) and Hardy’s inequality (d ≥ 3),

∥∇t,xu∥2L∞
t L2

x∩LE + ∥⟨r⟩−1u∥2L∞
t L2

x∩LE ≲ ∥∇t,xu(0)∥2L2
x
+

∫
R

∫
R1+d

|∇t,xu||f |+ |r−1u||f | dx dt.
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Then the result follows from 2ab ≤ δa2 + δ−1b2. □

We now consider the perturbed equation{
(−∂2

t − L)u = f

u(0) = u0, ∂tu(0) = u1

(2.13)

where L = −∆+ bk∂k + c is a perturbation of the minus Laplacian which satisfies the decay
condition

∞∑
j=0

sup
Rt×Aj

⟨x⟩|b|+ ⟨x⟩2|∂lbl|+ ⟨x⟩2|c| < κ, (2.14)

where κ > 0 is a positive constant and bj, c are smooth functions. At this point, we allow
bj, c to be complex-valued and time-dependent.

Corollary 2.5. Let u be a solution of (2.13). If κ is small enough, then u satisfies

∥∇t,xu∥L∞
t L2

x∩LE + ∥⟨r⟩−1u∥L∞
t L2

x∩LE ≲ ∥∇t,xu(0)∥L2
x
+ ∥f∥L1

tL
2
x+LE∗ .

Proof. We write Bu = bj∂ju+ cu and rewrite the equation as (−∂2
t +∆)u = f −Bu. Thus,

∥∇t,xu∥L∞
t L2

x∩LE + ∥⟨r⟩−1u∥L∞
t L2

x∩LE ≲ ∥(u0, u1)∥Ḣ1×L2 + ∥f −Bu∥LE∗

Furthermore,

∥Bu∥LE∗ ≃
∞∑
k=0

2
k
2 ∥Bu∥L2L2(Rt×Ak) =

∞∑
k=0

2
k
2 ∥bl∂lu∥L2L2(Rt×Ak) + 2

k
2 ∥cu∥L2L2(Rt×Ak)

≲ κ(∥∇t,xu∥LE + ∥⟨r⟩−1u∥LE)
(2.15)

Thus, after combining these two inequalities, the result follows if κ is sufficiently small so
that we can absorb it to the left hand side. □

3. Strichartz estimates

Definition 3.1. A pair (p, q) is said to be wave-admissible in dimension d+ 1 if

p ∈ [2,∞],
1

p
+

d− 1

2q
≤ d− 1

4
, (p, q, d) ̸= (2,∞, 3)

We begin by recalling the Strichartz estimates for □, which captures the dispersive prop-
erty of finite energy solutions to the wave equation in a useful way.

Theorem 3.2. Let u0, u1 ∈ S (Rd), and let u be the solution to (1.1) with this initial
data. Let (p, q) and (p̃, q̃) be pairs of wave-admissible exponents, which also obey the scaling
conditions

d

2
− 1 =

1

p
+

d

q
=

1

p̃′
+

d

q̃′
− 2, (3.1)

where p̃′ and q̃′ are the Lebesgue duals to p̃ and q̃, i.e
1

p̃′
+

1

p̃
=

1

q̃′
+

1

q̃
= 1. Then, we have

the following

∥∇t,xu∥L∞L2 + ∥u∥LpLq ≲p,q,p̃,q̃ ∥(u0, u1)∥Ḣ1×L2 + ∥f∥Lp̃′Lq̃′
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We are now going to prove the following result:

Theorem 3.3 (Rodnianski-Schlag). We assume that the coefficients of (2.13) satisfy (2.14)
for some κ > 0 (in particular, κ can be large). We also assume that ILED (2.12) holds for
the perturbated equation (2.13).
Let u0, u1 ∈ S (Rd), and let u be the solution to (2.13) with this initial data. Let (p, q)

and (p̃, q̃) be pairs of wave-admissible exponents, which also obey the scaling conditions (3.1)
In addition, we assume that they also satisfy the non-endpoint condition p, p̃ > 2. Then,

∥∇t,xu∥L∞L2 + ∥u∥LpLq ≲p,q,p̃,q̃ ∥(u0, u1)∥Ḣ1×L2 + ∥f∥L1
tL

2
x+LE∗ .

Remark 3.4. One can also add another term ∥∇t,xu∥Lp1Lq1 in the left hand side, provided
the stronger version of homogeneous Strichartz estimates, where (p1, q1) is another wave-
admissible pair. To put ∥f∥Lp̃′Lq̃′ , we need the ILED assumption on the dual problem.

Proof. We write L = −∆+B and

(−∂2
t +∆)u = Bu+ f.

Thanks to the ILED assumption (2.12) for −∂2
t − L, we know

∥Bu∥LE∗ ≲ κ(∥∇t,xu∥LE + ∥⟨r⟩−1u∥LE) ≲ ∥(u0, u1)∥Ḣ1
x×L2

x
+ ∥f∥L1

tL
2
x+LE∗ , (3.2)

where we use the assumption for κ in (2.14) in the first inequality and the ILED for the
perturbed equation (−∂2

t + L)u = f in the second in equality.
Moreover, if w solves the homogeneous problem with initial data (0, u0, u1), then

∥∇t,xw∥L∞
t L2

x∩LE ≲ ∥∇u0∥L2 + ∥u1∥L2 ,

which means that we only need to prove the theorem for u − w, which is a solution to the
inhomogeneous problem with zero initial data. In other words, it suffices to show

∥u∥Lp
tL

q
x
≲p,q ∥F∥L1

tL
2
x+LE∗ .

for forward solutions u to (∂2
t −∆)u = F .

If v solves the homogeneous problem, then

∥∇t,xv∥L∞
t L2

x∩LE ≲ ∥∇u0∥L2 + ∥u1∥L2 ,

where v can be expressed in terms of the Duhamel’s formula

v(t) = cos(t
√
−∆)u0 +

sin(t
√
−∆)√

−∆
u1.

Therefore, it is equivalent to write∥∥∥cos(t√−∆)∇u0

∥∥∥
L∞
t L2

x∩LE
≲ ∥∇u0∥L2 ,

∥∥∥∥∇sin(t
√
−∆)√

−∆
u1

∥∥∥∥
L∞
t L2

x∩LE
≲ ∥u1∥L2 .

Then by duality,∥∥∥∥∫ ∞

−∞
cos(t

√
−∆)F (t) dt

∥∥∥∥
L2
x

≲ ∥F∥L1
tL

2
x+LE∗ ,

∥∥∥∥∫ ∞

−∞
sin(t

√
−∆)F (t) dt

∥∥∥∥
L2
x

≲ ∥F∥L1
tL

2
x+LE∗ .
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Moreover, the homogeneous Strichartz estimates imply∥∥∥∥sin(t√−∆)√
−∆

∫ ∞

−∞
cos(s

√
−∆)F (s) ds

∥∥∥∥
Lp
tL

q
x

≲

∥∥∥∥∫ ∞

−∞
cos(s

√
−∆)F (s) ds

∥∥∥∥
L2
x∥∥∥∥cos(t√−∆)

∫ ∞

−∞

sin(s
√
−∆)√

−∆
F (s) dt

∥∥∥∥
Lp
tL

q
x

≲

∥∥∥∥∇∫ ∞

−∞

sin(s
√
−∆)√

−∆
F (s) ds

∥∥∥∥
L2
x

.

Combining the estimates above,∥∥∥∥∫ ∞

−∞

sin(t− s)
√
−∆√

−∆
F (s) ds

∥∥∥∥
Lp
tL

q
x

≲ ∥F∥L1
tL

2
x+LE∗ .

Thanks to Christ-Kiselev lemma, we have

∥u∥Lp
tL

q
x
≲p,q ∥F∥L1

tL
2
x+LE∗ .

for forward solutions u to (∂2
t −∆)u = F , which completes the proof. □

Remark 3.5. In general, Strichartz estimates are difficult to prove. The advantage of this is
to reduce the proof of Strichartz estimates for −∂2

t −L to the ILED for −∂2
t −L by invoking

the Strichartz estimates for □.

4. Spectral theoretic characterization of local energy decay

We assume L is a linear operator of the form L = −∆ + bk∂k + c, where b, c are time-
independent, b is purely imaginary and divergence free and c is real. Moreover, L obeys the
decay condition (2.14) for some (possibly large) κ > 0. With these conditions, it follows that
L is self-adjoint with D(L) = {u ∈ L2 : Pu ∈ L2} and hence σ(L) ⊂ R. (The assumptions
here are natural in many physics models such as magnetic potentials.)

We consider the Cauchy problem

−∂2
t u− Lu = f, (u, ∂tu)(0) = (u0, u1) ∈ Ḣ1 × L2 (4.1)

and set the energy to be

E[u](t) :=
1

2
∥∂tu∥2L2 +

1

2
⟨Lu, u⟩.

Then ∂tE[u](t) = −⟨f, ∂tu⟩ and this implies that

E[u](t) ≤ E[u](0) +

∫
⟨f, ∂tu⟩ dt.

Therefore, if we assume the coercivity condition

⟨Lu, u⟩ ≥ ∥u∥2
Ḣ1 , (4.2)

then by combining with the obvious bound ⟨Lu, u⟩ ≤ ∥u∥2
Ḣ1 for nice u, we obtain the uniform

boundedness of energy as a consequence

∥∇t,xu∥L∞
t L2

x
≤ ∥(u0, u1)∥Ḣ1×L2 + ∥f∥L1

tL
2
x
.

We remark at this point that (4.2) rules out the existence of negative eigenvalues by
simply noticing ⟨λ0u0, u0⟩ ≥ 0 for any (u0, λ0) such that Lu0 = λ0u0. Indeed, any negative
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eigenvalue of L would lead to solutions to (4.1) that grows exponentially as either t → ∞ or
t → −∞, which is a clear violation of the uniform boundedness of energy.

Our goal is to give a characterization of the ILED in terms of spectral theory. Such a
connection shows how tools from spectral theory can be employed to establish ILED. For
this purpose, we begin by defining the (wave) resolvents of L as

Rz := (z2 − L)−1, (4.3)

which are well-defined as an operator L2 → D(L) if z2 /∈ σ(L).

Remark 4.1. In fact, we do not care about what D(L) is too much. We only need L to be
self-adjoint. Moreover, one can do a change of variable τ = z2 to turn Rz into standard
resolvents. The choice of z2 here is more natural due to the Fourier transform in time we
would employ later.

We introduce the spatial counterparts of the norms LE and LE∗, namely,

∥u∥LE = sup
j≥0

∥⟨r⟩−
1
2u∥L2(Aj), ∥f∥LE∗ =

∑
j≥0

∥⟨r⟩
1
2f∥L2(Aj).

Theorem 4.2. The following statements are equivalent :

(1) Every solution u to (2.13) obeys (2.1).
(2) For every τ ∈ R and ε > 0, we have

|τ ∓ iε|∥Rτ∓iεg∥LE + ∥∇xRτ∓iεg∥LE + ∥⟨r⟩−1Rτ∓iεg∥LE ≲ ∥g∥LE∗ . (4.4)

Remark 4.3. The basic idea is to take the Fourier transform in time, then we formally obtain

(τ 2 − L)û(τ) = f̂(τ). Although f ∈ LE∗ ⊂ L2(R1+d), a finite energy solution u might not
be square integrable in time. To carry out this strategy in a rigorous fashion, we need the
following reductions.

Proof. Given f ∈ LE∗ with supp(·, x) away from {t = −∞}, we define a forward solution
to be the one such that u(t) → 0 in Ḣ1 × L2 as t → −∞. For f ∈ S (R1+d), the forward
solution is given by Duhamel’s formula

u(t) =

∫ t

−∞

sin(t− s)
√
L√

L
f(s) ds,

where sin(t−s)
√
L√

L
can be viewed as a formal symbol denoting the solution for homogeneous

equation with initial data (0, f(s)). One can also make sense of this using spectral calculus.
Step 1 : Reduction to forward solutions. In this step, our goal is to show that the following

two statements are equivalent :

(a) For any f ∈ S (R1+d), the solution u corresponds to f with initial data (u0, u1) ∈
Ḣ1 × L2, (2.1) holds.

(b) For any f ∈ S (R1+d), the forward solution u corresponds to f , we have

∥∇t,xu∥LE + ∥r−1u∥LE ≲ ∥f∥LE∗ . (4.5)
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It is obvious that (a) implies (b) by choosing the initial time to tend to −∞. For the converse,
we assume (b) is true and use an argument similar to the Rodnianski-Schlag argument. Let
v be the solution to the free wave equation (1.1) with the same initial data (f, u0, u1), then
clearly, v satisfies

∥∇t,xv∥LE + ∥r−1v∥LE ≲ ∥(u0, u1)∥Ḣ1×L2 + ∥f∥LE∗ .

Moreover, we write

(−∂2
t − L)(u− v) = Bv

and we may estimate

∥Bv∥LE∗ ≲ κ(∥∇t,xv∥LE + ∥⟨r⟩−1v∥LE) ≲ ∥(u0, u1)∥Ḣ1
x×L2

x
+ ∥f∥L1

tL
2
x+LE∗ ,

where we do not need the smallness of κ, in contrast with (3.2).
Let vf , vb be the forward and backward solutions corresponding to 1(0,∞)(t) · Bv and

1(−∞,0)(t) · Bv, respectively. One can define the forward solutions in LE∗ (at least those
in LE∗ with support in time away from t = −∞) by extending (4.5) by density S ⊂ LE∗,
and hence we can replace f by 1(0,∞)(t) · Bv with corresponding forward and backward
solutions vf in (4.5), that is,

∥∇t,xvf∥LE + ∥r−1vf∥LE ≲ ∥1(−∞,0)(t) ·Bv∥LE∗ ≲ ∥Bv∥LE∗ .

Similarly,

∥∇t,xvb∥LE + ∥r−1vb∥LE ≲ ∥Bv∥LE∗

and therefore

∥∇t,x(v + vf + vb)∥LE + ∥r−1(v + vf + vb)∥LE ≲ ∥(u0, u1)∥Ḣ1
x×L2

x
+ ∥f∥LE∗ .

Note that u−v−vf−vb is a finite energy solution with zero data, it follows that u = v+vf+vb
by uniqueness, which proves (2.1).

Step 2 : Reduction to damped forward solutions. For any f ∈ S (R1+d), the corresponding
forward solution have adequate time decay as t → −∞ to apply the Plancherel theorem.
However, their behavior as t → +∞ is still potentially problematic. In this step, we resolve
this issue by showing that (b) is equivalent to

(c) For any f ∈ S (R1+d), the forward solution u corresponds to f ,

∥e−εt∇t,xu∥LE + ∥e−εtr−1u∥LE ≲ ∥e−εtf∥LE∗ (4.6)

for all ε > 0.

The implication from (c) to (b) : Thanks to (c), we have

2−j/2∥e−εt∇t,xu∥L2L2(Rt×Aj) + 2−j/2∥e−εtr−1u∥L2L2(Rt×Aj) ≲ ∥e−εtf∥LE∗

and furthermore, for all K,

2−j/2e−εK∥∇t,xu∥L2L2((−∞,K]×Aj) + 2−j/2e−εK∥r−1u∥L2L2((−∞,K]×Aj) ≲ ∥e−εtf∥LE∗ .

Let ε → 0 and then let K → ∞, then (b) follows.
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The implication from (b) to (c) : We compute

∥e−εt∇t,xu∥LE = sup
k≥0

∥⟨r⟩−
1
2 e−εt∇t,xu∥L2L2(Rt×Ak) ≃ sup

k≥0

(
∥⟨r⟩−

1
21(j,j+1](t)e

−εt∇t,xu∥2L2L2(Rt×Ak)

) 1
2

≤ sup
k≥0

(∑
j∈Z

(
e−εj/2∥⟨r⟩−

1
21(j,j+1](t)∇t,xu∥L2L2(Rt×Ak)

)2) 1
2

=

∥∥∥∥∥∥∥e−εj/2∥⟨r⟩−
1
21(j,j+1](t)∇t,xu∥L2L2(Rt×Ak)

∥∥∥
ℓ2j

∥∥∥∥
ℓ∞k

≲

(∑
j∈Z

(
e−εj/2∥1(j,j+1](t)∇t,xu∥LE

)2) 1
2

,

(4.7)

where the last step follows from Minkowski’s inequality. Similarly,

∥e−εt⟨r⟩−1u∥LE ≲

(∑
j∈Z

(
e−εj/2∥1(j,j+1](t)⟨r⟩−1u∥LE

)2) 1
2

.

On the other hand,

∥e−εtf∥LE∗ =
∑
k≥0

∥⟨r⟩
1
2 e−εtf∥L2L2(Rt×Ak)

≃
∑
k≥0

(∑
j∈Z

(
e−εj/2∥1(j,j+1](t)⟨r⟩1/2f∥L2L2(Rt×Ak)

)2) 1
2

≳

(∑
j∈Z

(
e−εj/2∥1(j,j+1](t)f∥LE∗

)2) 1
2

.

Therefore, it suffices to show

∥Uj∥ℓ2 ≲ ∥Fj∥ℓ2 , (4.8)

where

Uj := e−εj/2
(
∥1(j,j+1](t)∇t,xu∥LE + ∥1(j,j+1](t)⟨r⟩−1u∥LE

)
, Fj := e−εj/2∥1(j,j+1](t)f∥LE∗ .

To simplify our notations, set fj := 1(j,j+1](t)f and use uj to denote the forward solution
corresponded to fj.

Note that

uj(t) =

∫ t

−∞

sin(t− s)
√
L√

L
fj(s) ds,

we know suppuj(·, x) ⊂ [j,∞) and therefore

1(j,j+1](t)u(t, x) = 1(j,j+1](t)
∑
j′<j

uj′(t, x).

Obviously, such equality also holds by replacing u by ∇t,xu and ⟨r⟩−1u.
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By (b), we compute

Uj =e−εj/2

(
∥1(j,j+1](t)∇t,x

∑
j′<j

uj′∥LE + ∥1(j,j+1](t)⟨r⟩−1
∑
j′<j

uj′∥LE

)

≲e−εj/2

(∑
j′<j

∥1(j,j+1](t)∇t,xuj′∥LE + ∥1(j,j+1](t)⟨r⟩−1uj′∥LE

)

≲e−εj/2

(∑
j′<j

∥∇t,xuj′∥LE + ∥⟨r⟩−1uj′∥LE

)
≲ e−εj/2

∑
j′<j

eεj
′/2Fj′ =

∑
j′<j

e−ε(j−j′)/2Fj′ ,

where the first inequality follows in the same spirit of (4.7) and the third inequality follows
from (b). Note that the convolution kernel e−εk/2 is integrable in k ∈ {k ∈ Z : k > 0} for all
ε > 0, it follows from Schur’s lemma or Young’s inequality that (4.8) holds.

Step 3 : Reduction to a form for which Plancherel’s theorem can be applied. Since LE and
LE∗ norm is not of the form L2

tXx for some Banach space X, we want to reduce it to such
a form.

We claim that (c) is equivalent to

(d) For any j, k and any f with support in Ak, we have

2−j/2∥e−εt∇t,xu∥L2L2(Rt×Aj) + 2−3j/2∥e−εtu∥L2L2(Rt×Aj) ≲ 2k/2∥e−εtf∥L2L2(Rt×Ak).

Let uk be the forward solution corresponding to χkf , then u =
∑

k u
k, where χk localize to

Ak′ = Ak ∪ Ak+1 such that
∑

χk = 1.
The implication from (c) to (d) is obvious thanks to the support property. The implication

from (d) to (c) follows from the triangle inequality by the partition of unity.
Step 4 : Application of the Plancherel’s theorem and closing the proof. Note that for nice

f, u0, u1, the forward solution u given by existence theory is at least continuous in time so
that we can take the Fourier transform after we multipliy it by e−εt. By taking a Fourier
transform in time, (d) is equivalent to

2−j/2∥(|τ−iε|,∇x)û(τ−iε)∥L2L2(Rt×Aj)+2−j/2∥⟨r⟩−1û(τ−iε)∥L2L2(Rt×Aj) ≲ 2k/2∥f̂(τ−iε)∥L2L2(Rt×Ak).

By noticing that

û(τ − iε) = Rτ−iεf̂(τ − iε),

we know

2−j/2∥(|τ − iε|,∇x)Rτ−iεf̂(τ − iε)∥L2L2(Rt×Aj)+2−j/2∥⟨r⟩−1Rτ−iεf̂(τ − iε)∥L2L2(Rt×Aj)

≲ 2k/2∥f̂(τ − iε)∥L2L2(Rt×Ak).

In particular, by choosing f(t, x) = ϕ(t)g(x) with ϕ polynomially growing, smooth and
support away from −∞, we know the equivalence of (d) and the second statement in the
theorem, which completes the proof. □

If we use the standard notation for resolvents, then the second statement implies that for
any λ > 0, √

λ∥Rλ±iεg∥LE + ∥∂Rλ±iεg∥LE ≲ ∥g∥LE∗ . (4.9)
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Theorem 4.4. Suppose that (4.9) holds for any λ > 0, then L has only purely absolutely
continuous spectrum on any compact subinterval [a, b] ⊂ (0,∞).

Proof. By density, it suffices to show that µf is absolutely continuous for any f ∈ C∞
c on

[a, b]. By Stone’s formula, we have

1

2
(µf ((a, b)) + µf ((a, b))) = lim

ε→0+

1

2πi

∫ b

a

⟨Rλ−iεf −Rλ+iεf, f⟩ dλ.

First, take a = b, then µf ({a}) = 0 for all a. Since ⟨Rλ−iεf−Rλ+iεf, f⟩ is uniformly bounded
on [a, b], uniformly in ε, dominated convergence theorem, we know

µf ((a, b)) =
1

2πi

∫ b

a

lim
ε→0+

⟨Rλ−iεf −Rλ+iεf, f⟩ dλ =
1

2πi

∫ b

a

g(λ) dλ,

for some g(λ). Note that the limits of Rλ−iεf and Rλ+iε are different, which is the limit
absorption principle. This means that dµf ≪ dλ and therefore it is absolutely continuous.

□
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