A Matrix Expander Chernoff Bound

Ankit Garg, Yin Tat Lee, Zhao Song, Nikhil Srivastava

UC Berkeley
Vanilla Chernoff Bound

Thm [Hoeffding, Chernoff]. If X_1, \ldots, X_k are independent mean zero random variables with $|X_i| \leq 1$ then

$$
P \left[\left| \frac{1}{k} \sum_i X_i \right| \geq \epsilon \right] \leq 2 \exp(-k\epsilon^2/4)$$
Vanilla Chernoff Bound

Thm [Hoeffding, Chernoff]. If X_1, \ldots, X_k are independent mean zero random variables with $|X_i| \leq 1$ then

\[
\mathbb{P}
\left[
\left|
\frac{1}{k} \sum_{i} X_i
\right|
\geq \epsilon
\right]
\leq 2 \exp\left(-k \epsilon^2 / 4\right)
\]

Two Extensions:

1. **Dependent** Random Variables
2. Sums of random **matrices**
Thm[Gillman’94]: Suppose $G = (V, E)$ is a regular graph with transition matrix P which has second eigenvalue λ. Let $f: V \to \mathbb{R}$ be a function with $|f(v)| \leq 1$ and $\sum_v f(v) = 0$.
Expander Chernoff Bound [AKS’87, G’94]

Thm[Gillman’94]: Suppose $G = (V, E)$ is a regular graph with transition matrix P which has second eigenvalue λ. Let $f : V \rightarrow \mathbb{R}$ be a function with $|f(v)| \leq 1$ and $\sum_v f(v) = 0$. Then, if v_1, \ldots, v_k is a stationary random random walk:

$$\mathbb{P} \left[\left| \frac{1}{k} \sum_{i} f(v_i) \right| \geq \epsilon \right] \leq 2 \exp(-c(1 - \lambda)k\epsilon^2)$$

Impiles walk of length $k \approx (1 - \lambda)^{-1}$ concentrates around mean.
Intuition for Dependence on Spectral Gap

1 - \lambda = \frac{1}{n^2}
Intuition for Dependence on Spectral Gap

$$1 - \lambda = \frac{1}{n^2}$$

Typical random walk takes $\Omega(n^2)$ steps to see both ± 1.
Thm[Gillman’94]: Suppose $G = (V, E)$ is a regular graph with transition matrix P which has second eigenvalue λ. Let $f: V \to \mathbb{R}$ be a function with $|f(v)| \leq 1$ and $\sum_v f(v) = 0$. Then, if v_1, \ldots, v_k is a stationary random walk:

$$\mathbb{P} \left[\left| \frac{1}{k} \sum_i f(v_i) \right| \geq \epsilon \right] \leq 2\exp(-c(1 - \lambda)k\epsilon^2)$$

To generate k indep samples from $[n]$ need $k \log n$ bits. If G is 3-regular with constant λ, walk needs: $\log n + k \log(3)$ bits.
Derandomization Motivation

Thm[Gillman’94]: Suppose $G = (V, E)$ is a regular graph with transition matrix P which has second eigenvalue λ. Let $f : V \to \mathbb{R}$ be a function with $|f(v)| \leq 1$ and $\sum_v f(v) = 0$. Then, if v_1, \ldots, v_k is a stationary random walk:

$$
\mathbb{P} \left[\left| \frac{1}{k} \sum_i f(v_i) \right| \geq \epsilon \right] \leq 2\exp(-c(1 - \lambda)k\epsilon^2)
$$

To generate k indep samples from $[n]$ need $k \log n$ bits. If G is 3-regular with constant λ, walk needs: $\log n + k \log(3)$ bits.

When $k = O(\log n)$ reduces randomness \textit{quadratically}.

\textit{Can completely derandomize in polynomial time.}
Matrix Chernoff Bound

Thm [Rudelson’97, Ahlswede-Winter’02, Oliveira’08, Tropp’11...]. If X_1, \ldots, X_k are independent mean zero random $d \times d$ Hermitian matrices with $\|X_i\| \leq 1$ then

$$
P \left[\left\| \frac{1}{k} \sum_i X_i \right\| \geq \epsilon \right] \leq 2d \exp(-k\epsilon^2 / 4)$$
Matrix Chernoff Bound

Thm [Rudelson’97, Ahlswede-Winter’02, Oliveira’08, Tropp’11...]. If \(X_1, ..., X_k \) are independent mean zero random \(d \times d \) Hermitian matrices with \(||X_i|| \leq 1 \) then

\[
P \left[\left\| \frac{1}{k} \sum_i X_i \right\| \geq \epsilon \right] \leq 2d \exp \left(-k \epsilon^2 / 4 \right)
\]

Factor \(d \) is tight because of the diagonal case.

Very generic bound (no independence assumptions on the entries). Many applications + martingale extensions (see Tropp).
Conj[Wigderson-Xiao’05]: Suppose $G = (V, E)$ is a regular graph with transition matrix P which has second eigenvalue λ. Let $f : V \rightarrow \mathbb{C}^{d \times d}$ be a function with $||f(v)|| \leq 1$ and $\sum_v f(v) = 0$. Then, if v_1, \ldots, v_k is a stationary random walk:

$$\mathbb{P} \left[\left\| \frac{1}{k} \sum_i f(v_i) \right\| \geq \epsilon \right] \leq 2d \exp(-c(1 - \lambda)k\epsilon^2)$$

Motivated by derandomized Alon-Roichman theorem.
Main Theorem

Thm. Suppose $G = (V, E)$ is a regular graph with transition matrix P which has second eigenvalue λ. Let $f: V \to \mathbb{C}^{d \times d}$ be a function with $\|f(v)\| \leq 1$ and $\sum_v f(v) = 0$. Then, if v_1, \ldots, v_k is a stationary random walk:

$$\mathbb{P}\left[\left\|\frac{1}{k} \sum_i f(v_i)\right\| \geq \epsilon\right] \leq 2d \exp(-c(1 - \lambda)k\epsilon^2)$$

Gives black-box derandomization of any application of matrix Chernoff
1. Proof of Chernoff: reduction to mgf

Thm [Hoeffding, Chernoff]. If X_1, \ldots, X_k are independent mean zero random variables with $|X_i| \leq 1$ then

$$
\mathbb{P}
\left[
\left| \frac{1}{k} \sum_i X_i \right| \geq \epsilon
\right] \leq 2\exp\left(-k\epsilon^2/4\right)
$$
1. Proof of Chernoff: reduction to mgf

Thm [Hoeffding, Chernoff]. If X_1, \ldots, X_k are independent mean zero random variables with $|X_i| \leq 1$ then

$$\mathbb{P} \left[\left| \frac{1}{k} \sum_i X_i \right| \geq \epsilon \right] \leq 2 \exp(-k\epsilon^2/4)$$

$$\mathbb{P} \left[\sum_i X_i \geq k\epsilon \right] \leq e^{-tk\epsilon} \mathbb{E} \exp \left(t \sum_i X_i \right)$$

Markov
1. Proof of Chernoff: reduction to mgf

Thm [Hoeffding, Chernoff]. If \(X_1, \ldots, X_k \) are independent mean zero random variables with \(|X_i| \leq 1 \) then

\[
\mathbb{P} \left[\left| \frac{1}{k} \sum_i X_i \right| \geq \epsilon \right] \leq 2 \exp(-k\epsilon^2/4)
\]

\[
\mathbb{P} \left[\sum_i X_i \geq k\epsilon \right] \leq e^{-tk\epsilon} \mathbb{E} \exp \left(t \sum_i X_i \right) = e^{-tk\epsilon} \prod_i \mathbb{E} e^{tX_i}
\]

Indep.
1. Proof of Chernoff: reduction to mgf

Thm [Hoeffding, Chernoff]. If X_1, \ldots, X_k are independent mean zero random variables with $|X_i| \leq 1$ then

$$\Pr \left[\left| \frac{1}{k} \sum_i X_i \right| \geq \epsilon \right] \leq 2 \exp(-k\epsilon^2/4)$$

$$\Pr \left[\sum_i X_i \geq k\epsilon \right] \leq e^{-tk\epsilon} \mathbb{E} \exp \left(t \sum_i X_i \right) = e^{-tk\epsilon} \prod_i \mathbb{E} e^{tx_i}$$

$$\leq e^{-tk\epsilon} (1 + t\mathbb{E}X_i + t^2)^k$$

Bounded
1. Proof of Chernoff: reduction to mgf

Thm [Hoeffding, Chernoff]. If X_1, \ldots, X_k are independent mean zero random variables with $|X_i| \leq 1$ then

$$\mathbb{P} \left[\left| \frac{1}{k} \sum_{i} X_i \right| \geq \epsilon \right] \leq 2 \exp(-k\epsilon^2/4)$$

$$\mathbb{P} \left[\sum_{i} X_i \geq k\epsilon \right] \leq e^{-tk\epsilon} \mathbb{E} \exp \left(t \sum_{i} X_i \right) = e^{-tk\epsilon} \prod_{i} \mathbb{E} e^{tX_i}$$

$$\leq e^{-tk\epsilon} (1 + t^2)^k$$
1. Proof of Chernoff: reduction to mgf

Thm [Hoeffding, Chernoff]. If X_1, \ldots, X_k are independent mean zero random variables with $|X_i| \leq 1$ then

$$
\mathbb{P} \left[\left| \frac{1}{k} \sum_i X_i \right| \geq \epsilon \right] \leq 2 \exp(-k \epsilon^2/4)
$$

$$
\mathbb{P} \left[\sum_i X_i \geq k \epsilon \right] \leq e^{-tk\epsilon} \mathbb{E} \exp \left(t \sum_i X_i \right) = e^{-tk\epsilon} \prod_i \mathbb{E} e^{tx_i}
$$

$$
\leq e^{-tk\epsilon} (1 + t^2)^k \leq e^{-tk\epsilon + kt^2}
$$
1. Proof of Chernoff: reduction to mgf

Thm [Hoeffding, Chernoff]. If $X_1, ..., X_k$ are independent mean zero random variables with $|X_i| \leq 1$ then

$$
\mathbb{P} \left[\left| \frac{1}{k} \sum_{i} X_i \right| \geq \varepsilon \right] \leq 2 \exp\left(-\frac{k\varepsilon^2}{4} \right)
$$

$$
\mathbb{P} \left[\sum_{i} X_i \geq k\varepsilon \right] \leq e^{-tk\varepsilon} \mathbb{E} \exp\left(t \sum_{i} X_i \right) = e^{-tk\varepsilon} \prod_{i} \mathbb{E} e^{tx_i}
$$

$$
\leq e^{-tk\varepsilon} (1 + ... + t^2)^k \leq e^{-tk\varepsilon + kt^2} \leq e^{-\frac{k\varepsilon^2}{4}}
$$
2. Proof of Expander Chernoff

Goal: Show $\mathbb{E} \exp (t \sum_i f(v_i)) \leq \exp (c \lambda k t^2)$
2. Proof of Expander Chernoff

Goal: Show $\mathbb{E} \exp(t \sum_i f(v_i)) \leq \exp(c_\lambda k t^2)$

Issue: $\mathbb{E} \exp(\sum_i f(v_i)) \neq \prod_i \mathbb{E} \exp(tf(v_i))$

How to control the mgf without independence?
Step 1: Write mgf as quadratic form

\[\mathbb{E} e^t \sum_{i \leq k} f(v_i) \]

\[= \sum_{i_0, \ldots, i_k \in V} P(v_0 = i_0) P(i_0, i_1) \cdots P(i_{k-1}, i_k) \exp \left(t \sum_{1 \leq j \leq k} f(i_j) \right) \]
Step 1: Write mgf as quadratic form

$$\mathbb{E} e^{t \sum_{i \leq k} f(v_i)}$$

$$= \sum_{i_0, \ldots, i_k \in V} \mathbb{P}(v_0 = i_0) P(i_0, i_1) \cdots P(i_{k-1}, i_k) \exp\left(t \sum_{1 \leq j \leq k} f(i_j)\right)$$

$$= \frac{1}{n} \sum_{i_0, \ldots, i_k \in V} P(i_0, i_1) e^{tf(i_1)} \cdots P(i_{k-1}, i_k) e^{tf(i_k)}$$
Step 1: Write mgf as quadratic form

\[\mathbb{E} e^t \sum_{i \leq k} f(v_i) \]

\[= \sum_{i_0, \ldots, i_k \in V} \mathbb{P}(v_0 = i_0)P(i_0, i_1) \ldots P(i_{k-1}, i_k) \exp \left(t \sum_{1 \leq j \leq k} f(i_j) \right) \]

\[= \frac{1}{n} \sum_{i_0, \ldots, i_k \in V} P(i_0, i_1)e^{tf(i_1)} \ldots P(i_{k-1}, i_k)e^{tf(i_k)} \]

\[= \langle u, (EP)^k u \rangle \text{ where } u = \left(\frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}} \right). \]

\[E = \begin{bmatrix} e^{tf(1)} \\ \vdots \\ e^{tf(n)} \end{bmatrix} \]
Step 2: Bound quadratic form

Goal: Show $\langle u, (EP)^k u \rangle \leq \exp(c\lambda kt^2)$

Observe: $||P - J|| \leq \lambda$ where $J =$ complete graph with self loops
So for small λ, should have $\langle u, (EP)^k u \rangle \approx \langle u, (EJ)^k u \rangle$
Step 2: Bound quadratic form

Goal: Show $\langle u, (EP)^k u \rangle \leq \exp(c_\lambda k t^2)$

Observe: $||P - J|| \leq \lambda$ where $J = \text{complete graph with self loops}$
So for small λ, should have $\langle u, (EP)^k u \rangle \approx \langle u, (EJ)^k u \rangle$

Approach 1. Use perturbation theory to show $||EP|| \leq \exp(c_\lambda t^2)$
Step 2: Bound quadratic form

Goal: Show $\langle u, (EP)^k u \rangle \leq \exp(\lambda k t^2)$

Observe: $\|P - J\| \leq \lambda$ where J = complete graph with self loops
So for small λ, should have $\langle u, (EP)^k u \rangle \approx \langle u, (EJ)^k u \rangle$

Approach 1. Use perturbation theory to show $\|EP\| \leq \exp(\lambda t^2)$

Approach 2. (Healy’08) track projection of iterates along u.
Simplest case: $\lambda = 0$
Simplest case: $\lambda = 0$
Simplest case: $\lambda = 0$

$EP\nu$
Simplest case: $\lambda = 0$
Simplest case: $\lambda = 0$

$EPEP\nu$
Observations

Observe: P shrinks every vector orthogonal to u by λ.

$$\langle u, E u \rangle = \frac{1}{n} \sum_{v \in V} e^{tf(v)} = 1 + t^2$$ by mean zero condition.
A small dynamical system

\[m_\perp = \|Q_\perp v\| \]

\[m_\parallel = \langle v, u \rangle \]

\[v = (EP)^j u \]
A small dynamical system

\[m_\perp = \|Q_\perp v\| \]

\[m_\parallel = \langle v, u \rangle \]

\[v = (EP)^j u \]

\[e^{t^2} \]

\[m_\parallel \]

\[m_\perp \]

\[\lambda = 0 \]

\[\nu \sim EP\nu \]
A small dynamical system

\[m_{\perp} = \|Q_{\perp}v\| \]

\[v = (EP)^ju \]

\[m_{\parallel} = \langle v, u \rangle \]

\[m_{\parallel} = e^{t^2} \]

\[m_{\parallel} = e^{t\lambda} \]

\[\lambda t \]

any \(\lambda \)

\[v \sim EPv \]
A small dynamical system

\[m_{\perp} = \|Q_{\perp}v\| \]

\[v = (EP)^j u \]

\[m_{\parallel} = \langle v, u \rangle \]

\[t \leq \log \frac{1}{\lambda} \]

\[\lambda t \leq 1 \]

\[v \sim EPv \]
A small dynamical system

\[m_\perp = \|Q_\perp v\| \]

\[v = (EP)^j u \]

\[m_\parallel = \langle v, u \rangle \]

Any mass that leaves gets shrunk by \(\lambda \)
Analyzing dynamical system gives

Thm[Gillman’94]: Suppose $G = (V, E)$ is a regular graph with transition matrix P which has second eigenvalue λ. Let $f: V \to \mathbb{R}$ be a function with $|f(v)| \leq 1$ and $\sum_v f(v) = 0$. Then, if v_1, \ldots, v_k is a stationary random walk:

$$\mathbb{P} \left[\left| \frac{1}{k} \sum_i f(v_i) \right| \geq \epsilon \right] \leq 2\exp(-c(1 - \lambda)k\epsilon^2)$$
Generalization to Matrices?

Setup: $f: V \rightarrow \mathbb{C}^{d \times d}$, random walk v_1, \ldots, v_k.

Goal:

$$\mathbb{E}\text{Tr} \left[\exp \left(t \sum_i f(v_i) \right) \right] \leq d \cdot \exp(ckt^2)$$

where e^A is defined as a power series.
Generalization to Matrices?

Setup: \(f: V \rightarrow \mathbb{C}^{d \times d} \), random walk \(v_1, \ldots, v_k \).

Goal:

\[
\mathbb{E}Tr \left[\exp \left(t \sum_i f(v_i) \right) \right] \leq d \cdot \exp(ckt^2)
\]

where \(e^A \) is defined as a power series.

Main Issue: \(\exp(A + B) \neq \exp(A) \exp(B) \) unless \([A, B] = 0\)

can’t express \(\exp(\text{sum}) \) as iterated product.
The Golden-Thompson Inequality

Partial Workaround [Golden-Thompson’65]:

\[Tr(\exp(A + B)) \leq Tr(\exp(A) \exp(B)) \]

Sufficient for independent case by induction.
The Golden-Thompson Inequality

Partial Workaround [Golden-Thompson’65]:

\[Tr(\exp(A + B)) \leq Tr(\exp(A) \exp(B)) \]

Sufficient for **independent** case by induction. For **expander** case, need this for \(k \) matrices.
The Golden-Thompson Inequality

Partial Workaround [Golden-Thompson’65]:

\[\text{Tr}(\exp(A + B)) \leq \text{Tr}(\exp(A) \exp(B)) \]

Sufficient for **independent** case by induction.
For **expander** case, need this for \(k \) matrices. False!

\[\text{Tr}(e^{A+B+C}) > 0 > \text{Tr}(e^A e^B e^C) \]
Key Ingredient

[Sutter-Berta-Tomamichel’16] If A_1, \ldots, A_k are Hermitian, then

$$\log Tr(e^{A_1+\ldots+A_k}) \leq \int d\beta(b) \log Tr \left[\left(e^{\frac{A_1(1+ib)}{2}} \ldots e^{\frac{A_k(1+ib)}{2}} \right) \left(e^{\frac{A_1(1+ib)}{2}} \ldots e^{\frac{A_k(1+ib)}{2}} \right)^* \right]$$

where $\beta(b)$ is an explicit probability density on \mathbb{R}.
Key Ingredient

[Sutter-Berta-Tomamiche16] If A_1, \ldots, A_k are Hermitian, then

$$\log \text{Tr}(e^{A_1^+ \cdots + A_k})$$

$$\leq \int d\beta(b) \log \text{Tr} \left[\left(e^{\frac{A_1(1+ib)}{2}} \cdots e^{\frac{A_k(1+ib)}{2}} \right) \left(e^{\frac{A_1(1+ib)}{2}} \cdots e^{\frac{A_k(1+ib)}{2}} \right)^* \right]$$

where $\beta(b)$ is an explicit probability density on \mathbb{R}.

1. Matrix on RHS is always PSD.
2. **Average-case** inequality: $e^{A_i/2}$ are conjugated by unitaries.
3. Implies Lieb’s concavity, triple-matrix, ALT, and more.
Proof of SBT: Lie-Trotter Formula

\[e^{A+B+C} = \lim_{\theta \to 0^+} \left(e^{\theta A} e^{\theta B} e^{\theta C} \right)^{1/\theta} \]
Proof of SBT: Lie-Trotter Formula

\[e^{A+B+C} = \lim_{\theta \to 0^+} (e^{\theta A} e^{\theta B} e^{\theta C})^{1/\theta} \]

\[\log \text{Tr} \ e^{A+B+C} = \lim_{\theta \to 0^+} 2\log ||G(\theta)||_{2/\theta}/\theta \]

For \(G(z) := e^{zA/2} e^{zB/2} e^{zC/2} \)
Complex Interpolation (Stein-Hirschman)

\[\log ||G(\theta)||_{2/\theta} \]
Complex Interpolation (Stein-Hirschman)

For each θ, find analytic $F(z)$ st:

$|F(it)| = 1$

$|F(1 + it)| \leq \|G(1 + it)\|_2$

$|F(\theta)| = \|G(\theta)\|_{2/\theta}$
Complex Interpolation (Stein-Hirschman)

For each θ, find analytic $F(z)$ st:

$$|F(it)| = 1$$

$$|F(1 + it)| \leq \|G(1 + it)\|_2$$

$$|F(\theta)| = \|G(\theta)\|_{2/\theta}$$

$$\log|F(\theta)| \leq \int \log |F(it)| + \int \log |F(1 + it)|$$
Complex Interpolation (Stein-Hirschman)

For each θ, find analytic $F(z)$ st:

$$|F(it)| = 1$$

$$|F(1 + it)| \leq \|G(1 + it)\|_2$$

$$|F(\theta)| = \|G(\theta)\|_{2/\theta}$$

$$\lim_{\theta \to 0}$$

$$\log |F(\theta)| \leq \int \log |F(it)| + \int \log |F(1 + it)|$$
[Sutter-Berta-Tomamichel’16] If A_1, \ldots, A_k are Hermitian, then

$$\log \text{Tr} (e^{A_1^+ \ldots + A_k})$$

$$\leq \int d\beta(b) \log \text{Tr} \left[\left(e^{\frac{A_1(1+ib)}{2}} \ldots e^{\frac{A_k(1+ib)}{2}} \right) \left(e^{\frac{A_1(1+ib)}{2}} \ldots e^{\frac{A_k(1+ib)}{2}} \right)^* \right]$$

where $\beta(b)$ is an explicit probability density on \mathbb{R}.
Key Ingredient

[Sutter-Berta-Tomamichel’16] If A_1, \ldots, A_k are Hermitian, then

$$\log \text{Tr}(e^{A_1} \cdots e^{A_k}) \leq \int d\beta(b) \log \text{Tr} \left[\left(e^{\frac{A_1(1+ib)}{2}} \cdots e^{\frac{A_k(1+ib)}{2}} \right) \left(e^{\frac{A_1(1+ib)}{2}} \cdots e^{\frac{A_k(1+ib)}{2}} \right)^* \right]$$

where $\beta(b)$ is an explicit probability density on \mathbb{R}.

Issue. SBT involves integration over unbounded region, bad for Taylor expansion.
Bounded Modification of SBT

Solution. Prove bounded version of SBT by replacing strip with half-disk.

[Thm] If A_1, \ldots, A_k are Hermitian, then

$$ \log \text{Tr}(e^{A_1} + \cdots + e^{A_k}) \leq \int d\beta(b) \log \text{Tr} \left[\left(e^{\frac{A_1 e^{ib}}{2}} \cdots e^{\frac{A_k e^{ib}}{2}} \right) \left(e^{\frac{A_1 e^{ib}}{2}} \cdots e^{\frac{A_k e^{ib}}{2}} \right)^* \right] $$

where $\beta(b)$ is an explicit probability density on $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

Proof. Analytic $F(z)$ + Poisson Kernel + Riemann map.
Handling Two-sided Products

Issue. Two-sided rather than one-sided products:

\[
\text{Tr} \left[\left(e^{\frac{tf(v_1)e^{ib}}{2}} \ldots e^{\frac{tf(v_k)e^{ib}}{2}} \right) \left(e^{\frac{tf(v_1)e^{ib}}{2}} \ldots e^{\frac{tf(v_k)e^{ib}}{2}} \right)^* \right]
\]
Handling Two-sided Products

Issue. Two-sided rather than one-sided products:

\[
Tr \left[\left(e^{\frac{tf(v_1)e^{ib}}{2}} \cdots e^{\frac{tf(v_k)e^{ib}}{2}} \right) \left(e^{\frac{tf(v_1)e^{ib}}{2}} \cdots e^{\frac{tf(v_k)e^{ib}}{2}} \right)^* \right]
\]

Solution.
Encode as one-sided product by using \(Tr(AXB) = (A \otimes B^T)vec(X) \):

\[
\langle e^{\frac{tf(v_1)e^{ib}}{2}} \otimes e^{\frac{tf(v_1)^*e^{ib}}{2}} \cdots e^{\frac{tf(v_k)^*e^{-ib}}{2}} \otimes e^{\frac{tf(v_k)^*e^{-ib}}{2}} vec(I_d), vec(I_d) \rangle
\]
Finishing the Proof

Carry out a version of Healy’s argument with $P \otimes I_{d^2}$ and:

$$E = \begin{bmatrix}
\frac{tf(1)e^{ib}}{2} & \frac{tf(1)*T e^{ib}}{2} \\
\frac{e}{2} & \otimes & \frac{e}{2}
\end{bmatrix} \ldots
\begin{bmatrix}
\frac{tf(n)e^{ib}}{2} & \frac{tf(n)*T e^{-ib}}{2} \\
\frac{e}{2} & \otimes & \frac{e}{2}
\end{bmatrix}$$

And $vec(I_d) \otimes u$ instead of u.

This leads to the additional d factor.
Main Theorem

Thm. Suppose $G = (V, E)$ is a regular graph with transition matrix P which has second eigenvalue λ. Let $f : V \to \mathbb{C}^{d \times d}$ be a function with $\|f(v)\| \leq 1$ and $\sum_v f(v) = 0$. Then, if v_1, \ldots, v_k is a stationary random walk:

$$\mathbb{P} \left[\left\| \frac{1}{k} \sum_i f(v_i) \right\| \geq \epsilon \right] \leq 2d \exp(-c(1 - \lambda)k\epsilon^2)$$
Open Questions

Other matrix concentration inequalities
 (multiplicative, low-rank, moments)
Other Banach spaces
 (Schatten norms)
More applications of complex interpolation