Girth, Expansion, and Localization of Graph Eigenfunctions

Nikhil Srivastava
w/ Noga Alon (Princeton) and Shirshendu Ganguly (Berkeley)

Stanford Online Combinatorics Seminar, May 21 2010
Setup

Undirected $d + 1$-regular graph G on n vertices.

Adjacency matrix A has eigenvalues

$$d + 1 = \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$$

Q. What is the combinatorial meaning of the interior eigenvectors?
A Warmup

Observation. If $Av = \lambda v$ and v is supported on k vertices, then

$$girth(A) \leq 4\log_d(k)$$
A Warmup

Observation. If $Av = \lambda v$ and v is supported on k vertices, then

$$girth(A) \leq 4\log_d(k)$$

Proof.

![Graph G with vertices S, $+$, $-$, and 0]
A Warmup

Observation. If $Av = \lambda v$ and v is supported on k vertices, then

$$\text{girth}(A) \leq 4\log_d(k)$$

Proof.

$$0 = v(x) = \sum_{y \sim x} v(y)$$

Diagram of a graph G with vertices labeled and edges connecting some of them.
A Warmup

Observation. If $Av = \lambda v$ and v is supported on k vertices, then

$$girth(A) \leq 4\log_d(k)$$

Proof.

Every vertex adjacent to S has at least two nbrs in S.
A Warmup

Observation. If $Av = \lambda v$ and v is supported on k vertices, then

$$girth(A) \leq 4 \log_d(k)$$

Proof.

\[G \]

Every vertex adjacent to S had at least two nbrs in S.
A Warmup

Observation. If $Av = \lambda v$ and v is supported on k vertices, then

$$girth(A) \leq 4\log_d(k)$$

Proof.

Every vertex adjacent to S has at least two nbrs in S. Replace excursions of length 2 by new edges.
A Warmup

Observation. If $Av = \lambda v$ and v is supported on k vertices, then

$$girth(A) \leq 4 \log_d(k)$$

Proof.

$$\mindeg(H) \geq d + 1 \Rightarrow girth(H) \leq 2 \log_d(k)$$
A Warmup

Observation. If $Av = \lambda v$ and v is supported on k vertices, then

\[girth(A) \leq 4 \log_d(k) \]

Proof.

\[girth(G) \leq 4 \log_d(k) \]

\[\text{mindeg}(H) \geq d + 1 \Rightarrow girth(H) \leq 2 \log_d(k) \]
A Warmup

Observation. If $Av = \lambda v$ and v is supported on k vertices, then

$$girth(A) \leq 4\log_d(k)$$

Proof.

$$girth(G) \leq 4\log_d(k)$$

$$k \geq d^{g/4}$$
Localization and Delocalization

Defn. A unit vector v is (ϵ, k)-**delocalized** if for all subsets $S \subset [n]$:

$$\|v_S\|_2^2 \geq \epsilon \Rightarrow |S| > k$$

Otherwise it is (ϵ, k)-**localized**, i.e., $\|v_S\|_2^2 \geq \epsilon$ for some $|S| \leq k$.

Q. What about $\epsilon < 1$?
Localization and Delocalization

Defn. A unit vector v is (ϵ, k)-**delocalized** if for all subsets $S \subset [n]$:

$$||v_S||_2^2 \geq \epsilon \Rightarrow |S| > k$$

Otherwise it is (ϵ, k)-**localized**, i.e., $||v_S||_2^2 \geq \epsilon$ for some $|S| \leq k$.

e.g. k-sparse means $(1, k)$-localized

$(\epsilon, 1)$-delocalized implies $||v||_\infty^2 \leq \epsilon$

$||v||_\infty^2 \leq 1/n$ implies $(\epsilon, \epsilon n)$-delocalized for all ϵ.

Q. What about $\epsilon < 1$?
Localization and Delocalization

Defn. A unit vector v is (ϵ, k)—**delocalized** if for all subsets $S \subset [n]$:

$$||v_S||_2^2 \geq \epsilon \Rightarrow |S| > k$$

Otherwise it is (ϵ, k)-**localized**, i.e., $||v_S||_2^2 \geq \epsilon$ for some $|S| \leq k$.

e.g. k—sparse means $(1, k)$—localized

$(\epsilon, 1)$—delocalized implies $||v||_\infty^2 \leq \epsilon$

$||v||_\infty^2 \leq 1/n$ implies $(\epsilon, \epsilon n)$-delocalized for all ϵ.

Showed: If A has girth g then every eigvec is $(d^{g/4}, 1)$-delocalized

Q. What about $\epsilon < 1$?
Thm. Suppose G is $d + 1$-regular with girth g and $Av = \lambda v$.

1. If $\lambda \in (-2\sqrt{d}, 2\sqrt{d})$ then v is $(\varepsilon, \varepsilon^2 d^{c\varepsilon^2 g})$-delocalized for $\varepsilon \in (0,1)$.

2. If $\lambda \notin (-2\sqrt{d} - \delta, 2\sqrt{d} - \delta)$ then $||v||_\infty^2 \leq d^{-\Omega \delta(g)}$.
Thm. Suppose G is $d + 1$-regular with girth g and $Av = \lambda v$.

1. If $\lambda \in (-2\sqrt{d}, 2\sqrt{d})$ then v is $(\epsilon, \epsilon^2 d^{c\epsilon^2 g})$-delocalized for $\epsilon \in (0,1)$.
2. If $\lambda \notin (-2\sqrt{d} - \delta, 2\sqrt{d} - \delta)$ then $||v||_\infty^2 \leq d^{-\Omega \delta(g)}$.

When $g = \Omega(\log d \, n)$, (1) implies $(\epsilon, \epsilon^2 n^{\Omega(\epsilon^2)})$-deloc and $||v||_\infty^2 \leq (\log d \, n)^{-1/2}$ whereas (2) implies $||v||_\infty^2 \leq n^{-c}$.

\[
\text{Strong deloc} \quad \text{weak deloc} \quad \text{strong (}\ell_\infty^2 \leq n^{-c}\text{)}
\]

\[
-2\sqrt{d} \text{ (most λ) } < \sqrt{d}
\]
Questions

Q1. How does localization depend on the eigenvalue λ?

Q2. How does localization depend on the mass ϵ?

(in [BL’06], exponent of ϵ depends on $\lambda \in (-2\sqrt{d}, 2\sqrt{d})$ and Diophantine properties of λ)
Questions

Q1. How does localization depend on the eigenvalue λ?

Q2. How does localization depend on the mass ϵ?

(in [BL’06], exponent of ϵ depends on $\lambda \in (-2\sqrt{d}, 2\sqrt{d})$ and Diophantine properties of λ)

Q3. How do high girth graphs compare to random regular graphs?

(cf. [BHY’16] shows bulk eigenvectors have $||v||_\infty^2 \leq \frac{\log^c(n)}{n}$)
Theorem A [Ganguly-S’18]

Thm. Suppose G is $d + 1$-regular with girth g and $Av = \lambda v$.

then v is $(\epsilon, \epsilon d^{\frac{\epsilon g}{4} - 3})$-delocalized for $\epsilon \in (0,1)$.

Improved constant and exponent of ϵ compared to [BL’06] part (1).

Implies

$$||v||_\infty^2 \leq (\log_d n)^{-1}.$$

Contrapositive: (k, ϵ)-localized implies $g \leq 4 \log(\frac{k}{\epsilon})/\epsilon + O(1)$.

Proof is a technical improvement of [BL’06] (approx. theory + nonbacktracking walks)
Theorem B [Alon-Ganguly-S’19]

Fix \(d \) prime. There is an infinite sequence of \(d + 1 \)-regular graphs \(G_m \) on \(m \) vertices such that:

1. \(\text{girth}(G_m) \geq \left(\frac{1}{3} \right) \log_d(m) \)
2. There is an eigenvector \(A_m \nu = \lambda \nu \) which is \((k, \epsilon)\)–localized for

\[
k = O(d^{4\epsilon \text{girth}(G_m)}) \quad \forall \epsilon \in (0,1]
\]

Implies exponent of \(\epsilon \) in Theorem A cannot be improved.
Theorem B [Alon-Ganguly-S’19]

Fix d prime. There is an infinite sequence of $d + 1$-regular graphs G_m on m vertices such that:

1. \(\text{girth}(G_m) \geq \left(\frac{1}{3} \right) \log_d(m) \)
2. There is an eigenvector $A_m \nu = \lambda \nu$ which is (k, ϵ)—localized for

\[
 k = O(d^{4\epsilon \text{girth}(G_m)}) \quad \forall \epsilon \in (0,1]
\]

The number of such λ for each G_m is $\Omega(\log_d(m))$.

The set of λ attained by the above sequence is dense in $(-2\sqrt{d}, 2\sqrt{d})$.

Implies arithmetic properties of λ do not play a role.
Theorem B [Alon-Ganguly-S’19]

Fix d prime. There is an infinite sequence of $d + 1$-regular graphs G_m on m vertices such that:

1. $\text{girth}(G_m) \geq \left(\frac{1}{3}\right) \log_d(m)$

2. There is an eigenvector $A_m v = \lambda v$ which is (k, ϵ)—localized for

$$k = O(d^{4\epsilon \text{girth}(G_m)}) \quad \forall \epsilon \in (0,1]$$

3. $|\lambda_i(A_m)| \leq 2.12 \sqrt{d}$ for all nontrivial adjacency eigenvalues.

The number of such λ for each G_m is $\Omega(\log_d(m))$.

The set of λ attained by the above sequence is dense in $(-2\sqrt{d}, 2\sqrt{d})$.

Implies arithmetic properties of λ do not play a role.
Proof of Theorem B (simplified)

Step 1. Finite $d + 1$-ary tree of depth ℓ
with n leaves.

Fact: has many $(\epsilon, d\epsilon^\ell)$-localized eigenvectors.
equal to zero on the leaves.
Proof of Theorem B

Step 2. Two $d + 1$-ary trees of depth ℓ, with leaves identified to maximize girth [Erdos-Sachs] or [McKay]

Yields girth $\geq \Omega(\ell) = \Omega(\log_d n)$

Eigenvector equation is satisfied by Reflecting ψ on the paired tree.
Proof of Theorem B

Step 3. Let H be a $d + 1$-regular Ramanujan [LPS,Margulis] graph with n defects of degree d at mutual distance $\Omega(\log_d n)$.
Proof of Theorem B

Step 3. Let H be a $d + 1$-regular Ramanujan [LPS,Margulis] graph with n defects of degree d at mutual distance $\Omega(\log_d n)$.

Identify leaves from step 2 with defects.
Retains girth $\Omega(\log_d n)$.

![Diagram of a graph with nodes labeled \mathcal{A} and ψ, and two triangles T_1 and T_2.](image)
Proof of Theorem B

Step 3. Let H be a $d + 1$-regular Ramanujan [LPS,Margulis] graph with n defects of degree d at mutual distance $\Omega(\log_d n)$.

Identify leaves from step 2 with defects. Retains girth $\Omega(\log_d n)$.

Set eigenvector to zero on H.
Theorem B [Alon-Ganguly-S’19]

Fix d prime. There is an infinite sequence of $d + 1$-regular graphs G_m on m vertices such that:

1. $\text{girth}(G_m) \geq \left(\frac{1}{3}\right)\log_d(m)$

2. There is an eigenvector $A_m v = \lambda v$ which is (k, ϵ) – localized for

 $$k = O(d^{4\epsilon \text{girth}(G_m)}) \quad \forall \epsilon \in (0,1]$$

3. $|\lambda_i(A_m)| \leq 2.12\sqrt{d}$ for all nontrivial adjacency eigenvalues.

The number of such λ for each G_m is $\Omega(\log_d(m))$.

The set of λ attained by the above sequence is dense in $(-2\sqrt{d}, 2\sqrt{d})$.
Theorem B [Alon-Ganguly-S’19]

Fix $d \geq 3$ prime. There is an infinite sequence of $d + 1$-regular graphs G_m on m vertices such that:

1. $\text{girth}(G_m) \geq \left(\frac{1}{3}\right) \log_d(m)$

2. There is an eigenvector $A_m v = \lambda v$ which is (k, ϵ)-localized for

 $$k = O(d^{4\epsilon \text{girth}(G_m)}) \quad \forall \epsilon \in (0,1]$$

3. $|\lambda_i(A_m)| \leq 2.12\sqrt{d}$ for all nontrivial adjacency eigenvalues.

The number of such λ for each G_m is $\Omega(\log_d(m))$.

The set of λ attained by the above sequence is dense in $(-2\sqrt{d}, 2\sqrt{d})$.
Spectral Gap

Observation: If any eigenvector of G is equal to zero on the interface then

$$v^T A_G v = v^T A_T v + v^T A_H v$$

$$\leq 2\sqrt{d} ||v_T||^2 + 2\sqrt{d} ||v_H||^2 + o(1)$$
Spectral Gap

Observation: If any eigenvector of G is equal to zero on the interface then

$$v^T A_G v = v^T A_T v + v^T A_H v$$
$$\leq 2\sqrt{d}||v_T||^2 + 2\sqrt{d}||v_H||^2 + o(1)$$

Key Lemma: Any putative non-Ramanujan eigenvector of G must have at most 5% of its mass on the interface.

(high girth + [Kahale’95] argument)
Theorem B [Alon-Ganguly-S’19]

Fix d prime. There is an infinite sequence of $d + 1$-regular graphs G_m on m vertices such that:

1. $\text{girth}(G_m) \geq \left(\frac{1}{3}\right) \log_d(m)$

2. There is an eigenvector $A_m v = \lambda v$ which is (k, ϵ)-localized for

 \[k = O(d^{4\epsilon \text{girth}(G_m)}) \quad \forall \epsilon \in (0,1) \]

3. $|\lambda_i(A_m)| \leq 2.12\sqrt{d}$ for all nontrivial adjacency eigenvalues.

The number of such λ for each G_m is $\Omega(\log_d(m))$.

The set of λ attained by the above sequence is dense in $(-2\sqrt{d}, 2\sqrt{d})$.
Theorem B [Alon-Ganguly-S’19]

Fix d prime. There is an infinite sequence of $d + 1$-regular graphs G_m on m vertices such that:

1. $\text{girth}(G_m) \geq \left(\frac{1}{3}\right) \log_d(m)$

2. There is an eigenvector $A_m \nu = \lambda \nu$ which is (k, ϵ)—localized for

$$k = O(d^{4\epsilon \text{girth}(G_m)}) \quad \forall \epsilon \in (0,1]$$

3. $|\lambda_i(A_m)| \leq 2.12\sqrt{d}$ for all nontrivial adjacency eigenvalues.

The number of such λ for each G_m is $\Omega(\log_d(m))$.

The set of λ attained by the above sequence is dense in $(-2\sqrt{d}, 2\sqrt{d})$.

\[\text{\textcolor{red}{\textbf{Note:}}} \] ≤ 2.04 for $d=2$. But not Ramanujan due to bad vertex expansion [Kohale]
The Quantum Ergodicity Angle

[Shnirelman’74] If the geodesic flow on a compact manifold is ergodic, then there is a dense subsequence of Laplacian eigenfunctions which is equidistributed (a strong notion of delocalization).
The Quantum Ergodicity Angle

[Shnirelman’74] If the geodesic flow on a compact manifold is \textit{ergodic}, then there is a dense subsequence of Laplacian eigenfunctions which is \textit{equidistributed} (a strong notion of delocalization).

QUE Conjecture [Rudnick-Sarnak]: If the manifold is \textit{negatively curved}, this is true for \textbf{all} eigenfunctions. Special case proved by Lindenstrauss.

[Smilansky’07] Study graphs as a simplified model for manifolds.
Quantum Ergodicity on Graphs

[Anantharaman-Le Masson’13] If $G = (V, E)$ is a bounded degree regular high girth expander with unit eigenvectors v_1, \ldots, v_n then:

$$\max_{|f| \leq 1} \sum_i \left| \sum_{x \in V} v_i^2(x) f(x) - \sum_x f(x) \right|^2 = o(n)$$

In fact, they proved this for eigenvectors in any $1/\log(n)$ interval.
Quantum Ergodicity on Graphs

[Anantharaman-Le Masson’13] If $G = (V, E)$ is a bounded degree regular high girth expander with unit eigenvectors v_1, \ldots, v_n then:

$$\max_{|f| \leq 1} \sum_i \left| \sum_{x \in V} v_i^2(x) f(x) - \sum_x f(x) \right|^2 = o(n)$$

In fact, they proved this for eigenvectors in any $1/\log(n)$ interval.

Strongest version of QUE: this is true for every eigenvector.

Theorem B disproves this strongest version.
Questions

• Actual Ramanujan graphs in Theorem B?
 Could Ramanujan + High Girth -> Strong delocalization?

• Minimal assumptions for Quantum Ergodicity on Graphs?
 Construct graphs with many localized λ in a small interval?

• More surgery on graphs preserving spectrum [Alon’20], [Paredes’20]

• Use interior eigenvectors to study girth, expansion?
 [cf. Naor’12 for Abelian Cayley Graphs]