1. (3 pts each) True or False (and provide a brief one or two sentence explanation):
 (a) The compound propositions
 \[\neg p \to q \]
 and
 \[\neg p \lor \neg q \]
 are logically equivalent.
 Solution: False, the first expression is equivalent to \(p \lor q \), which is different from
 the second expression (for instance, when \(p \) and \(q \) are both false).
 (b) The compound proposition
 \[(p \to F) \lor (p \to T) \]
 is a tautology, where \(T \) and \(F \) are true and false.
 Solution: This is a tautology, because the conditional \(p \to T \) is always true, and
 so its disjunction with any other proposition is also true.
 (c) Every subset of the integers has a least element.
 Solution: False. \(\mathbb{Z} \) itself does not.
 (d) If \(A \) and \(B \) are uncountable then \(A \cup B \) is also uncountable.
 Solution: True. Here is a proof of the contrapositive: suppose there is a bijection
 \(f: \mathbb{Z}^+ \to A \cup B \). Then consider the function \(g: \mathbb{Z}^+ \to A \) where \(g(n) \) is the \(n^{th} \)
 element of the sequence \(f(1), f(2), \ldots \) which is an element of \(A \). It is then easy
 to check that \(g \) is a bijection so \(A \) must be countable, so in particular it is not
 the case that \(A \) and \(B \) are uncountable.
 (A similar argument can be used to show that \(B \) is also countable, and this
 establishes the stronger statement that if \(A \cup B \) is countable then both \(A \) and \(B \)
 must be countable.)

2. (7 pts) Suppose \(A, B, \) and \(C \) are sets such that \(A \cap C = B \cap C \) and \(A \cup C = B \cup C \).
 Can you conclude that \(A = B \)? Give a proof or a counterexample.
 Solution: Yes, you can.
Proof. We will first show that $A \subseteq B$. Assume $x \in A$. If $x \in C$ then $x \in A \cap C$ so $x \in B \cap C$ and consequently $x \in B$. On the other hand, if $x \notin C$ then since $x \in A \cup C$ and $A \cup C = B \cup C$ we have $x \in B \cup C$, so x must be an element of B or C, but since we have assumed $x \notin C$ we must have $x \in B$. Since $x \in B$ in both cases, we conclude that $A \subseteq B$.

A completely analogous argument shows that $B \subseteq A$, so $A = B$. \[\square\]

3. (7 pts) Suppose A, B, and C are sets and $f : A \to B$ and $g : B \to C$ are functions such that $g \circ f : A \to C$ is injective. Can you conclude that both f and g are injective? Give a proof or a counterexample.

Solution: No. For a counterexample, consider $A = C = \{0, 1\}$, $B = \{0, 1, 2\}$, $f : A \to B$ by $f(x) = x$, and $g : B \to C$ by $g(0) = 0, g(1) = 1, g(2) = 1$. Then g is not injective but the composition $g \circ f$ is injective.

4. (7 pts) Prove that if x and y are integers and p is a prime such that xy and $x + y$ are both divisible by p, then both x and y must be divisible by p.

Proof. Since $p | xy$, we know by Euclid’s lemma that either $p | x$ or $p | y$. If p divides x, then since p divides $x + y$, we can conclude that p must also divide $x + y - x = y$. Thus, p divides both x and y, as desired. The case $p | y$ is completely analogous. \[\square\]

Note: instead of using “completely analogous”, I could also have begun the proof by saying “assume without loss of generality that $p | x$”, since the problem is completely symmetric in x and y, and I can assume I have named the numbers in a way that x is always divisible by p. See page 95 of the book for a more detailed discussion.

5. (7 pts) Prove that if n is an integer then $n^2 \equiv 0$ or $1 \mod 4$. Use this to show that if $m = 4k + 3$ for some integer k then m cannot be written as the sum of the squares of two integers.

Proof. We will first show that $n^2 \equiv 0$ or $1 \mod 4$. If n is even then there exists an integer k such that $n = 2k$. In this case, $n^2 = 4k^2$, which is always divisible by 4, so $n^2 \equiv 0 \mod 4$. If n is odd then there exists an integer k such that $n = 2k + 1$, in which case $n^2 = 4k^2 + 4k + 1$. Since the first two terms are divisible by 4 we have $n^2 \equiv 1 \mod 4$ in this case.

For the second part, let $m = 4k + 3$ and assume for contradiction that m can be written as the sum of two squares, i.e.,

$$m = a^2 + b^2$$

for some integers a, b. By the first part of the question, we have\footnote{For clarity I will use the boldface \texttt{mod} to denote the remainder operation.}

$$a^2 + b^2 \equiv (a^2 \mod 4) + (b^2 \mod 4) \equiv 0 \text{ or } 1 \text{ or } 2 \neq 3 \mod 4,$$
which is absurd since \(m \equiv 3 \pmod{4} \). Thus, our assumption is false, and \(m \) cannot be written as the sum of two squares.

6. (5 pts each) (a) Find an inverse of 5 modulo 13. (b) Compute the remainder when \(3^{16} \) is divided by 11.

Solution:

(a) We use the Euclidean algorithm to compute \(\gcd(13, 5) \):

\[
13 = 2 \cdot 5 + 3 \\
5 = 1 \cdot 3 + 2 \\
3 = 1 \cdot 2 + 1.
\]

Reversing these equalities, we can express 1 as an integer linear combination of 5 and 13:

\[
1 = 3 - 1 \cdot 2 = 3 - (5 - 1 \cdot 3) = 2 \cdot 3 - 5 = 2 \cdot (13 - 2 \cdot 5) - 5 = 2 \cdot 13 - 5 \cdot 5.
\]

The inverse of 5 modulo 13 must be the coefficient of 5 in this linear combination, which is \(-5 \equiv 8 \pmod{13}\).

Note that since 13 is prime it is also possible to calculate this inverse by appealing to Fermat’s Little Theorem, which tells us it must be congruent to \(5^{11} \pmod{13} \).

(b) Since 11 is prime and 11 \(\not|3\), Fermat’s Little Theorem tells us that

\[
3^{10} \equiv 1 \pmod{11}.
\]

Thus,

\[
3^{16} \equiv 3^{10} \cdot 3^6 \equiv 1 \cdot 9^3 \equiv (-2)^3 \equiv -8 \equiv 3 \pmod{11}.
\]