Homework 14 Out of Textbook Problems Solutions

1. Assume $G = (V, E)$ is a connected multigraph with $n \geq 2$ vertices. Let $S \subseteq V$ be the set of vertices with odd degree. If $S = \emptyset$ then by the Euler circuit theorem G has an Euler circuit, and we are done. Otherwise, since the sum of the degrees of the vertices is even by the handshaking theorem, we must have $|S| = k$ for some even k. Order the vertices in S arbitrarily as v_1, v_2, \ldots, v_k.

Add edges
\[\{v_1, v_2\}, \{v_3, v_4\}, \ldots, \{v_{k-1}, v_k\} \]

to G, call the resulting graph
\[G' = (V, E \cup \{\{v_1, v_2\}, \{v_3, v_4\}, \ldots, \{v_{k-1}, v_k\}\}) \].

Note that for every $v \in S$, the degree of v in G' is one more than the degree of v in G, so in particular it is even. Since we have not added any edges incident to the other vertices $V \setminus S$, their degrees are the same as they were in G, which were in particular even. Thus, the degrees of all vertices in G' are even. Since G' is also connected and has at least 2 vertices, it must have an Euler circuit by the Euler circuit theorem.

The total number of edges we have added is exactly $k/2$ (since k is even). When n is even, this is at most $n/2 = \lfloor n/2 \rfloor$. When n is odd, we must have $k \leq n - 1$, so again $k/2 \leq \frac{n-1}{2} = \lfloor n/2 \rfloor$, as desired.

2. (\Rightarrow). Assume $G = (V, E)$ is a simple graph and $c : V \to \{1, \ldots, k\}$ is a k–coloring of G, i.e., for every $uv \in E$ we have $c(u) \neq c(v)$. Define the sets:
\[V_i = \{v \in V : c(v) = 1\}, V_2 = \{v \in V : c(v) = 2\}, \ldots, V_k = \{v \in V : c(v) = k\}. \]

Note that $V_i \cap V_j = \emptyset$ whenever $i \neq j$, and moreover $V = V_1 \cup \ldots \cup V_k$, since every vertex is assigned a color by c.

Assume $i = 1, \ldots, k$ is arbitrary and let u, v be arbitrary vertices in V_i. Since $c(u) = c(v)$, we know by the definition of a coloring that $uv \notin E$. Thus, no two vertices in V_i are adjacent in G, as desired.

(\Leftarrow). Assume $G = (V, E)$ is a simple graph and V_1, \ldots, V_k is a partition of its vertices such that for every i, no two vertices in V_i are adjacent in G. We will produce a k–coloring of G. Consider the function $c : V \to \{1, \ldots, k\}$ defined by:
\[c(v) = i \quad \text{s.t.} \quad v \in V_i. \]

Since V_1, \ldots, V_k is a partition of V, every $v \in V$ appears in exactly one set in the partition, so c is a well-defined function. Assume now that $uv \in E$ is an arbitrary edge of G. Since no two vertices in any V_i are adjacent, we must have $u \in V_i$ and $v \in V_j$ for some $i \neq j$. But now $c(u) \neq c(v)$, so indeed c is a k–coloring of G, as desired.
3. Assume $G = (V, E)$ is an arbitrary simple graph that is not connected. Let G_1, \ldots, G_k be the connected components of G, and note that $k > 1$ since if $k = 1$, G would be connected. Note that every vertex in G lies in exactly one connected component.

We will show that the complement $G' = (V, \{\{u, v\} : \{u, v\} \not\in E\})$ is connected. The proof is based on the following observation: for all pairs of vertices $u, v \in V$ such that u and v are in distinct connected components of G, u cannot be adjacent to v in G.

To see why, assume for contradiction that there exist $u \in G_i, v \in G_j$ with $i \neq j$ and $uv \in E$. Then we could add the vertex v and the edge uv to G_i to obtain a strictly larger connected subgraph of G, contradicting the maximality of G_i (which is part of the definition of a connected component). Thus, we conclude that whenever u and v are in distinct connected components of G, they must be adjacent in the complement G'.

We now show that G' is connected. Let u and v be arbitrary vertices in G'. There are two cases:

Case 1: u and v are in distinct connected components G_i and G_j with $i \neq j$. By the observation, uv is an edge of G', and in particular there is a path from u to v in G' (the path consisting of the single edge uv.)

Case 2: There exists an i such that $u \in G_i$ and $v \in G_i$. Choose any other connected component G_j such that $j \neq i$ (this is possible since there are at least two connected components). Let w be an arbitrary vertex in G_j. By the observation, the edges uw and vw must be present in G'. Thus, there is a path of length 2, namely uw, vw from u to v in G'.

Thus, we have shown that an arbitrary pair of vertices in G' is connected by a path in G', so G' is connected, as desired.