
Math 55 Final Exam, Prof. Srivastava
Friday, May 13, 2016, 7:10–10:00pm, 100 Lewis Hall.

Name:

SID:

Instructions: Write all answers in the provided space. Please write carefully and clearly, in
complete English sentences. You may leave answers “unsimplified”, as sums/products/ratios
possibly involving binomial coefficients. This exam includes three pages of scratch paper,
which must be submitted, but will not be graded. Do not under any circumstances unstaple
the exam. Write your name and SID on every page.

You are allowed to bring one letter-size single sided page of notes. You are not allowed
to use any other materials or electronic devices.

UC Berkeley Honor Code: As a member of the UC Berkeley community, I act with
honesty, integrity, and respect for others.

Sign here:

All question are ten points, except for 4,5,6 which are worth 8,6,6 points, respectively.

Do not turn over this page until your instructor tells you to do so.
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1. Circle true (T) or false (F) for each of the following. There is no need to provide an
explanation.

(a) (2 points) The compound proposition

(p→ (q ∧ ¬q))→ ¬p

is a tautology.

Solution: True. q ∧ ¬q ≡ F , so p→ F can only be true if p is false.

T F

(b) (2 points) There exist integers x and y such that 21x + 54y = 1.

Solution: False. Note that 3 is a common divisor of 21 = 7 · 3 and 54 = 18 · 3.
If such a linear combination existed, we would have 3|21x + 54y or 3|1, which
is absurd.

One can also simply use Bezout’s theorem to say that such a linear combination
implies gcd(21, 54) = 1, which is false.

T F

(c) (2 points) A graph is 3−colorable if and only if all of the circuits in it have length
divisible by 3.

Solution: False. Consider the graph with two vertices and one edge. All of its
circuits have even length, but it is 3-colorable.

T F

(d) (2 points) If E and F are events in a probability space such that p(E) = 0.99 and
p(F ) = 0.99 then E and F cannot be independent.

Solution: False. Consider two independent biased coin flips where each coin
has a probability 0.99 of being heads, and let E be the event that the first coin
is heads, F that the second coin is heads.

T F

(e) (2 points) Let In denote the number of injective functions from {1, 2, 3, . . . , n} to
{1, 2, . . . , 55}. If m ≥ n then it must be the case that Im ≥ In.

Solution: False. Note that Im = 0 for m > 55 by the pigeonhole principle,
whereas Im 6= 0 for m ≤ 55.

T F
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2. (10 points) Suppose A is a (possibly infinite) set. Prove that A and its power set P(A)
cannot have the same cardinality. (hint: Prove that there is no bijection f : A→ P(A)
by considering for any function f the subset B = {x ∈ A : x /∈ f(x)}.)

Solution: Assume for the sake of contradiction that A and P(A) have the same
cardinality. By definition, there is a bijection f : A→ P(A). Consider the set

B = {x ∈ A : x /∈ f(X)},

and note that it is an element of P(A) since it is by construction a subset of A. Since
f is surjective, there must exist an element y ∈ A such that f(y) = B. There are
now two possibilities: if y ∈ B, then since we B = f(y) we have y ∈ f(y), but now
y /∈ B by the definition of B, which is absurd. On the other hand if y /∈ B then
y /∈ f(y) so y ∈ B, which is also absurd. Thus, our assumption is false, and no such
bijection exists, and A and P(A) must not have the same cardinality.

Some people asked me during the exam if we needed to assume A 6= ∅. In fact, the
argument above works even when A is empty, but if this bothers you, it is also easy
to simply handle the case A = ∅ by observing P(A) = {∅}, which has cardinality one,
and then assume A 6= ∅.
This problem was essentially assigned on HW2 and HW3 (2.1.46, 2.5.40).
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3. Consider the following one player game. The game begins with n shapes, each of which
is either a circle or a square. In each move, I have two options: (A) choose two shapes
of the same type and replace them by a square, OR (B) choose two shapes of different
types and replace them by a circle. The game is over when there is exactly one shape
left, and I win if that shape is a circle (otherwise I lose).

(a) (4 points) Prove by induction that the game always terminates in a finite number
of moves (regardless of the initial state).

Solution: Let P (n) denote the statement that the n−shape game always ter-
minates in n− 1 steps. We will show that P (n) is true for all integers n ≥ 1.

Basis Step: When n = 1 the game is already over, so indeed it terminates in
zero steps.

Inductive Step: Assume P (k) is true, and consider the game with k + 1 shapes.
As each move replaces two shapes with one shape, the total number of shapes
decreases by one, so after one move the number of shapes remaining is k. The
rest of the game is the same as playing with k shapes initially, so by our inductive
hypothesis it terminates in k− 1 steps. Adding the first step, we conclude that
the k+ 1-shape game terminates in 1 +k−1 = k = (k+ 1)−1 steps, as desired.

(b) (6 points) Prove that I win the game if and only if the initial number of circles is
odd.

Solution: (⇐). Assume that the initial number of circles is odd. Observe that
a move of type A reduces the number of circles by either zero or two (depending
on whether we remove two squares or two circles), and a move of type B does
not change the nmber of circles. Thus, every move preserves the property that
the total number of circles is odd. Since the game terminates after n− 1 moves
by part (1), the number of circles in the terminating configuration must also be
odd, so in particular the last shape must be a circle, which means that I win
the game.

(⇒). Assume that the initial number of circles is even. By the same argument
as above, each move preserves the parity (even or odd) of the number of circles.
Thus, after n − 1 moves the number of circles is still even; since there is only
one shape left after this many moves, it must be a square, so I lose the game.

The above arguments can also be formalized by induction, which is essentially
implicit in the wording “every move preserves the parity” and “the number of
moves is finite”. If you want to do this, an appropriate predicate to use would
be something like: P (n) = I win the game with n shapes iff the number of circles
is odd.
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4. (8 points) For any prime p, consider the following relation on S = {1, . . . , p− 1}:

Rp = {(a, b) : a = b ∨ ab ≡ 1 (mod p)} ⊆ S × S.

Prove or disprove: For every prime p, Rp is an equivalence relation.

Solution: This statement is true. Assume p is a prime. We will show that Rp is
reflexive, symmetric, and transitive:

Reflexive: Observe that for every a ∈ S we have a = a so (a, a) ∈ Rp.

Symmetric: Assume (a, b) ∈ Rp. If a = b then b = a so (b, a) ∈ Rp. Otherwise,
ab ≡ 1 (mod p), and since multiplication modulo p is commutative we have ba ≡ 1
(mod p), so again (b, a) ∈ Rp, as desired.

Transitive: Assume (a, b) ∈ Rp and (b, c) ∈ Rp. We will show that (a, c) ∈ Rp. If
a = b or b = c then this is immediate, so assume a 6= b and b 6= c. By the definition
of Rp we have

ab ≡ 1 (mod p) and bc ≡ 1 (mod p).

Since p is prime every number in S must have an inverse modulo p (since in particular
each such number is relatively prime to p), in particular b must have an inverse, call
it z. Multiplying both sides of the above congruences by z, we have

a(bz) ≡ z (mod p)⇒ a ≡ z (mod p),

(bz)c ≡ z (mod p)⇒ c ≡ z (mod p).

Thus, we conclude that a ≡ c (mod p), which means p|a− c. However since a, c ∈ S
we have |a− c| < p, so we must have a = c, which implies (a, c) ∈ Rp, as desired.
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5. (6 points) Calculate the remainder (−55)2016 mod 13.

Solution: Observe that

−55 = −13 · 4− 3 ≡ −3 ≡ 10 (mod 13).

Since 13 is prime we can try to use Fermat’s Little Theorem, which says a12 ≡ 1
(mod 13) whenever 13 6 |a, and we have 13 6 |10. By long division we observe that
2016 = 12 · 168,, so the expression of interest becomes

(10)12·168 ≡ (1012)168 ≡ 1168 ≡ 1 (mod 13).

Thus, the remainder is 1.

6. (6 points) Suppose k ≥ 1 and (x1, . . . , xk) is a randomly chosen k−permutation of
{1, . . . , n} (i.e., an ordered arrangement of k distinct elements, chosen uniformly from
all such arrangements). What is the probability that it is a strictly increasing sequence,
i.e., that

x1 < x2 < . . . < xk?

Solution: Observe that a random k−permutation is generating by choosing a ran-
dom k−combination, and then choosing a random permutation of the k chosen num-
bers. Since all permutations are equally likely and only one of them is increasing,
the probability is 1/k!.

If you want to do it a bit more mechanically, with sample spaces etc: the sample space
S is the set of all of k−permutations of {1, . . . , n}, so we have |S| = P (n, k) = n!

k!
. The

event E is the set of increasing k−permutations. Observe that the set of increasing
k−permutations is in bijection with the set of k-combinations: to choose such a per-
mutation we simply choose k (unordered) elements of {1, . . . , n} and then sort them
in increasing order; moreover, every increasing permutation uniquely determines a
k−combination. Thus, |E| =

(
n
k

)
, and the desired probability is

P (n, k)(
n
k

) =
1

k!
.
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7. (10 points) Consider a dial having a pointer that is equally likely to point to each of n
regions numbered 1, 2, . . . , n. If I spin the dial 3 times, what is the probability that the
sum of the selected numbers is exactly n?

Solution: The sample space of possible outcomes is S = {(x1, x2, x3) : xi ∈ {1, . . . , n}},
where xi is the number on the ith spin, and we have

|S| = n · n · n = n3.

The event of interest is the set

E = {(x1, x2, x3) ∈ S : x1 + x2 + x3 = n}.

To find the cardinality of E, we observe that it is the set of integer solutions to the
equation x1 + x2 + x3 = n with the constraints 1 ≤ xi ≤ n. This is the same as
putting n− 3 indistinguishable balls into 3 distinguishable bins (since each bin must
have at least one, we put these in in the beginning), so by stars and bars the number
of ways to do it is (

n− 3 + 3− 1

2

)
=

(
n− 1

2

)
.

Thus, the required probability is

|E|
|F |

=

(
n−1
2

)
n3

.
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8. Suppose I roll a standard 6−faced die 7 times. Let X be a random variable equal to the
number of distinct faces that appear (a face is a number in {1, 2, 3, 4, 5, 6}.)
(a) (6 points) What is the expectation of X?

Solution: Let Xi be the indicator random variable which is 1 iff the face i is
seen, and notice that

X = X1 + . . . + X6.

By linearity of expectation, we have

EX = EX1 + . . . + EX6.

For any i = 1, . . . , 6, we have

EXi = p(face i is seen) = 1− p(face i is not seen).

Since the rolls are independent and the probability of not seeing i on any roll is
5/6, the latter probability is

1− (5/6)7.

Thus, by linearity, the desired expectation is

6(1− (5/6)7).

The key here is to use linearity of expectation — it is quite a bit harder if you
try to do it directly. This problem is essentially identical to problem 7a on the
practice final.

(b) (4 points) What is the variance of X?

Solution: This was probably the hardest question on the exam and involved
combining linearity of expectation, taking complements, the definition of vari-
ance, counting, and inclusion-exclusion. Recall that

V (X) = EX2 − (EX)2.

We have already calcuated

(EX)2 = 36(1− (5/6)7)2

in the previous part, so it remains to calculate EX2. Observe that

E(X1 + . . . + X6)
2 =

6∑
i=1

EX2
i +

∑
1≤i 6=j≤6

EXiXj.

Since X2
i = Xi because Xi is an indicator we have

6∑
i=1

EX2
i =

6∑
i=1

EXi = EX = 6(1− (5/6)7),
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from the previous calculation.

We now calculate the remaining terms. Let Ei denote the event that the face i
is seen in the 7 rolls. Let i 6= j and observe that

EXiXj = p(Ei ∩ Ej) = 1− p(Ēi ∪ Ēj) == 1− (p(Ēi) + p(Ēj)− p(Ēi ∩ Ēj),

by inclusion-exclusion. Remark: The reason we are doing this is that Ei and
Ej are not independent, and it is easier to calculate p(Ēi ∩ Ēj) than p(Ei ∩Ej).
We calculate

p(Ēi ∩ Ēj) = (4/6)7,

so
EXiXj = 1− (2(5/6)7 − (4/6)7).

Since this calculation holds for any i 6= j and there are 2 ·
(
6
2

)
such pairs, we

obtain

EX2 = 6(1− (5/6)7) + 2 ·
(

6

2

)(
1 + (4/6)7 − 2(5/6)7

)
,

so in all the variance is

6(1− (5/6)7) + 2 ·
(

6

2

)(
1 + (4/6)7 − 2(5/6)7

)
− 36(1− (5/6)7)2.
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9. (10 points) Consider the sequence a0, a1, a2, . . . defined by the formula an = 3n + 4n+2.
Derive a closed form expression for the generating function

G(x) = a0 + a1x + a2x
2 + . . .

of this sequence, i.e., find polynomials p(x) and q(x) such that G(x) = p(x)/q(x).

Solution: We can write each term as an = bn + cn for bn = 3n and cn = 4n+2. The
generating function for bn is

F (x) =
∞∑
n=0

bnx
n = 1 + 3x + 32x2 + . . . + 3nxn + . . . =

1

1− 3x
,

and the generating function for cn is

H(x) =
∞∑
n=0

cnx
n = 42(1 + 4x + 42x2 + . . .) =

16

1− 4x
.

Thus, adding term by term, we can write

G(x) = F (x) + H(x) =
1

1− 3x
+

16

1− 4x
=

1− 4x + 16− 48x

(1− 3x)(1− 4x)
,

for polynomials p(x) = 17− 52x and q(x) = (1− 3x)(1− 4x).
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10. Prove or disprove:

(a) (5 points) There exists a simple graph with 6 vertices and 5 edges such that G has
an Euler circuit.

Solution: The question should have said: “there exists a connected simple
graph with 6 vertices ind 5 edges”, which is much more interesting than just
asking for a simple graph. It was my mistake to forget this important restriction,
and the question becomes really easy if G is not required to be connected. Those
who noticed this and were confident that they knew the definition of an Euler
circuit (a circuit which visits every edge of the graph exactly once, but not
necessarily every vertex) earned an easy 5 points by giving the example of a
disconnected graph, such as the union of a 5−cycle and a single isolated vertex.
This graph indeed has 6 vertices and 5 edges, and a circuit which traverses each
edge exactly once.

We will also give full points to everyone who assumed that G has to be connected
in which case no such graph exists. Here is the proof: Assume G is a simple
connected graph with |V | = 6 and |E| = 5, and assume for contradiction that G
has an Euler circuit. By the theorem proved in class, this means that G must
be connected and all vertices must have even degree; in particular, the degree of
each vertex must be at last two, since a degree of vertex zero would cause G to be
disconnected. Thus, the sum of the degrees of all the vertices must be at least 12.
However, by the handshaking theorem, we must have

∑
v∈V deg(v) = 2|E| = 10,

a contradiction.

(b) (5 points) There exists a simple graph G with 6 vertices and 7 edges such that G
has an Euler circuit.

Solution: True. Consider the graph G = (V,E) with V = {1, 2, 3, 4, 5, 6} and
E = {12, 23, 31, 24, 45, 56, 62}. One might arrive at such a graph by trying to
repeat the argument of the previous part, and realize that such a graph must have
degree sequence 2, 2, 2, 2, 2, 4, which leads to the graph above.
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11. (10 points) Prove by induction on k that every simple graph with n vertices and k edges
has at least n− k connected components.

Solution: We proceed by induction. Fix n ≥ 1 and let P (k) be the statement
that every simple graph with n vertices and k edges has at least n − k connected
components. We will show that P (k) is true for all k ≥ 0.

Basis Step: P (0) says that a graph with no edges has n connected components, and
this is true since each vertex is its own connected component.

Inductive Step: Assume P (k) is true. Let G be a graph with n vertices and k + 1
edges. Let e = uv be an arbitrary edge of G, and let G′ = G − e be the graph
obtained by deleting e. Let G1, . . . , G` be the connected components of G′ and
note that ` ≥ n − k by the inductive hypothesis. Notice that if u and v are in
the same connected component of G′, then adding it does not change the connected
components, so in this case G also has ` connected components. On the other hand
if u ∈ Gi and v ∈ Gj for some i 6= j then Gi ∪ Gj is a connected component of G,
since there is a path from every x ∈ Gi and y ∈ Gj by concatenating a path from
x to u, the edge uv, and a path from v to y. The other connected components of
G′ remain connected components in G. Thus, the number of connected components
decreases by at most one upon adding e, so the number of connected components in
G is at least `− 1 = n− k − 1 = n− (k + 1), as desired.
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