1. Consider $V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x \geq 0, y \geq 0 \right\}$.
 a) If u and v are in V, is $u + v$?
 Yes. Let $u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ and $v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ be two vectors in V. Then we get $u + v = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix}$.
 To check that this is in V, note that the first coordinate has $u_1 + v_1 \geq 0$ because both $u_1 \geq 0$ and $v_1 \geq 0$ from u and v being in V. Similarly, the second coordinate $u_2 + v_2$ is at least zero because both u_2 and v_2 are at least zero. So $u + v$ satisfies the conditions required to make it in V.

 b) Show that V is not closed under scaling.
 Any time we scale a vector in V by some negative constant, we will no longer be in V.
 For instance, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is in V since both coordinates are positive. But we can scale:
 $$-2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix}.$$
 This is no longer in V since both coordinates are now negative.

2. Consider $W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid xy \geq 0 \right\}$.
 a) Is W closed under scaling?
 Yes. Let $u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ be an element of W. Then if we scale u by some real number c:
 $$cu = \begin{bmatrix} cu_1 \\ cu_2 \end{bmatrix}.$$
 To check that this is still in W, we must look at whether $(cu_1)(cu_2)$ is positive. This can be simplified to $c^2(u_1u_2)$. Because c^2 is always positive and $u_1u_2 \geq 0$ (due to u being in W), we get that $(cu_1)(cu_2) \geq 0$. So cu will still be in W.

 b) Show that W is not closed under addition.
 We could start with a vector in the first quadrant like $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ that is in W. Then we could add to it a vector in the third quadrant, such as $\begin{bmatrix} -1 \\ -10 \end{bmatrix}$, which is also in W. Then the sum of these two is $\begin{bmatrix} 1 \\ -8 \end{bmatrix}$, and this is no longer in W because $1(-8) < 0$.

5. Do polynomials of the form \(p(t) = at^2 \) for any real number \(a \) form a subspace of \(\mathbb{P}_n \)?

Yes. We can check that each of our three requirements for being a *subspace* hold for these polynomials.

- **Zero vector:** The zero polynomial is just the polynomial that is zero everywhere, \(p(t) = 0 \). This is of the form \(p(t) = at^2 \) since when \(a = 0 \) we get \(p(t) = 0t^2 = 0 \).

- **Scaling:** If we start with some polynomial \(q(t) = bt^2 \). Then we can scale this polynomial by any real number \(k \). This gives us \(kq(t) = k(bt^2) = (kb)t^2 \). This is still a polynomial of our desired form since it is some real number times \(t^2 \). So starting with a polynomial of the correct form, we end up with a polynomial of the correct form.

- **Addition:** If we start with two polynomials of the correct form, \(p(t) = at^2 \) and \(q(t) = bt^2 \). Then we can add the polynomials \(p(t) + q(t) = at^2 + bt^2 = (a + b)t^2 \). And once again we find that we still have a real number times \(t^2 \). So our set is also closed under adding two polynomials.

6. Do polynomials of the form \(p(t) = a + t^2 \) for any real number \(a \) form a subspace of \(\mathbb{P}_n \)?

No. This already fails to be a subspace when we check our first rule. The zero polynomial is not in this set. There is no real number \(a \) we can choose to make \(a + t^2 = 0 \), as there is no way to make the \(t^2 \) term go away.

8. Do all polynomials with \(p(0) = 0 \) form a subspace of \(\mathbb{P}_n \)?

Yes. Let’s check the three requirements.

- **Zero vector:** The zero polynomial certainly satisfies the property of \(p(0) = 0 \). It evaluates to 0 everywhere, so in particular it evaluates to 0 at 0.

- **Scaling:** Suppose we start with some polynomial that has \(p(0) = 0 \). Then if we scale it by any real number \(k \), we can see that it still equals 0 at 0. This is because \((k \cdot p)(0) = k \cdot p(0) = k \cdot 0 = 0 \). So our set is closed under scaling.

- **Addition:** Again we want to start with any two polynomials in our set. So suppose \(p(0) = 0 \) and \(q(0) = 0 \). Then the polynomial \((p + q)(t)\) can be evaluated at 0, and we get \(p(0) + q(0) = 0 + 0 = 0 \). So adding two polynomials gives us a polynomial still in our set, i.e. we are closed under addition.

11. Let \(W \) be all of the vectors in \(\mathbb{R}^3 \) of the form \[
\begin{bmatrix}
5b + 2c \\
b \\
c
\end{bmatrix}
\] for any numbers \(b \) and \(c \). Find \(\mathbf{u} \) and \(\mathbf{v} \) that span \(W \). Show that \(W \) is a subspace of \(\mathbb{R}^3 \).

Another way of saying that \(\mathbf{u} \) and \(\mathbf{v} \) will be vectors spanning \(W \) is that anything in \(W \) is some linear combination of \(\mathbf{u} \) and \(\mathbf{v} \). We already know what form the vectors in \(W \) have, and we can manipulate them a bit to get:

\[
\begin{bmatrix}
5b + 2c \\
b \\
c
\end{bmatrix} = b \begin{bmatrix} 5 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}.
\]
This then tells us exactly that any vector in W is a linear combination of \[
\begin{bmatrix} 5 \\ 1 \\ 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}.
\]
So we get that:
\[
W = \text{span} \left\{ \begin{bmatrix} 5 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \right\}.
\]
This is a subspace of \mathbb{R}^3 because the span of vectors is always a subspace.

20. Let $C[a, b]$ be the set of all continuous functions that map from the interval $[a, b]$ to \mathbb{R}.

a) What facts must we prove in order to show that this is a subspace of all functions?

- **Zero vector**: The zero vector in this case is the function that is always zero, $f(x) = 0$. (When we add it to any other function, nothing changes.) So we need to prove first that $f(x) = 0$ is continuous.

- **Scaling**: If we start with any continuous function on our interval, $g(x)$. Then we next need to prove that for any real number we have that $kg(x)$ is also continuous.

- **Addition**: Finally, we would prove that if $f(x)$ and $g(x)$ are two continuous functions on $[a, b]$, then $f(x) + g(x)$ is also continuous.

b) Show that $\{f \in C[a, b] \mid f(a) = f(b)\}$ is a subspace of $C[a, b]$.

- **Zero vector**: We can check that the function that is always zero satisfies our property. Since it is zero everywhere, it will be zero at both a and b. So the zero function is the same on both end points.

- **Scaling**: Suppose we start with some $f(x)$ that has $f(a) = f(b)$. Then when we scale the function by some number k, we get $kf(a) = kf(b)$. So the scaled $kf(x)$ still has the correct property and is in our set.

- **Addition**: Suppose we start with any two functions in our set, $f(x)$ and $g(x)$. Then $f(a) + g(a) = f(b) + g(b)$ will still be true, as $f(a) = f(b)$ and $g(a) = g(b)$. So $f + g$ will also be in our set, i.e. it is closed under addition.

21. Consider H the set of 2×2 matrices of the form \[
\begin{bmatrix} a & b \\ 0 & d \end{bmatrix}
\]
for any numbers a, b and d. Is this a subspace of all 2×2 matrices?

Yes. We can simply check the same three conditions.

- **Zero vector**: In this case, the zero vector for 2×2 matrices is the matrix with 0 in every entry, \[
\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.
\]
Then this is in H, as it has the correct form where $a = 0$, $b = 0$, and $d = 0$.

- **Scaling**: If we start with any matrix M in H, it will have the form $M = \begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$.
Then scaling M by a real number k will give us:
\[
kM = \begin{bmatrix} ka & kb \\ 0 & kd \end{bmatrix}.
\]
This is still in the form of an element of H, so H is closed under scaling.
• **Addition:** Start with two matrices M_1 and M_2 in H. When we add them, we get:

$$M_1 + M_2 = \begin{bmatrix} a_1 & b_1 \\ 0 & d_1 \end{bmatrix} + \begin{bmatrix} a_2 & b_2 \\ 0 & d_2 \end{bmatrix} = \begin{bmatrix} a_1 + a_2 & b_1 + b_2 \\ 0 & d_1 + d_2 \end{bmatrix}.$$

Once again, we see that this is of the correct form for an element of H, so H is closed under addition.

22. If F is a fixed 3×2 matrix, let \mathcal{H} be the set of 2×4 matrices A such that $FA = 0$. Is this a subspace of all 2×4 matrices?

Yes. We can check that our three conditions are satisfied by looking at matrix multiplication and solving a bunch of equations. But instead, let’s consider a more geometric picture and think of these as being linear transformations.

We start with some fixed linear transformation $F : \mathbb{R}^2 \rightarrow \mathbb{R}^3$. Then \mathcal{H} is the set of $A : \mathbb{R}^4 \rightarrow \mathbb{R}^2$ such that $F \circ A$ is the zero linear transformation (it sends anything in \mathbb{R}^4 to the zero vector in \mathbb{R}^3). Or said another way: \mathcal{H} is the set of linear transformations whose column space is contained in the null space of F.

• **Zero vector:** We want to check that the column space of the zero transformation is contained in the null space of F. This is true because the column space of the zero transformation is just $\{0\}$, and 0 will always be in the null space of F.

• **Scaling:** If we start with some $A = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \end{bmatrix}$ whose column space is contained in the null space of F, what can we say about the column space of kA? We can see that $kA = \begin{bmatrix} ka_1 & ka_2 & ka_3 & ka_4 \end{bmatrix}$. Then any combination of these scaled columns will also be a combination of our original columns. So the column space of kA is contained in the column space of A, thus the column space of kA is also contained in the null space of F.

• **Addition:** If we start with $A = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \end{bmatrix}$ and $B = \begin{bmatrix} b_1 & b_2 & b_3 & b_4 \end{bmatrix}$ in \mathcal{H}.

Then we can look at the column space of:

$$A + B = \begin{bmatrix} a_1 + b_1 & a_2 + b_2 & a_3 + b_3 & a_4 + b_4 \end{bmatrix}.$$

Since we can split linear combinations of these columns into parts from A and parts from B, anything in the column space of $A + B$ will look like $u + v$ for u in the column space of A and v in the column space of B. Then since A and B are in \mathcal{H}, we know $F(u) = 0$ and $F(v) = 0$. So we finally get that $F(u + v) = 0$ for anything in the column space of $A + B$, which is exactly what we wanted.

23. Are the following true or false?

a) **False.** A function can equal zero at a single point without equaling zero everywhere. For instance, $f(x) = x - 1$ is zero at $x = 1$, but it is not the zero function.

b) **False.** An arrow in three-dimensional space is an example of a vector, but there are many others that do not look like this. For instance, we can have different dimensions of \mathbb{R}^n, or polynomials in \mathbb{P}_n.

c) **False.** We need more than just containing the zero vector to be a subspace. We also need the ability to scale and add without leaving the subset.

d) **True.** Checking that something is a vector space in general requires checking a long list (ten items) of properties that must be satisfied. However, if A is a subspace of the
vector space V, then A will ‘inherit’ a lot of these properties. For instance, since we can add two vectors in V in any order, this tells us that we can add two vectors in A in any order. In general, from the list at the beginning of section 4.1, properties 2, 3, 7, 8, 9, 10 are all inherited for free by A being a subset of V. Checking the remaining properties of A being a vector space are exactly what we check when we show that A is a subspace.

31. If u and v are two vectors in V, and H is a subspace of V containing u and v, then H also contains span$\{u, v\}$. Also span$\{u, v\}$ is the smallest subspace containing u and v.

This is essentially because H is a subspace of V, which means H is closed under scaling, addition, and any linear combinations. Since u and v are in H, any linear combinations of these two vectors must also be in H. But span$\{u, v\}$ is defined to be the set of all linear combinations of u and v. So H being closed under linear combinations means it contains everything in span$\{u, v\}$.

This also tells us that span$\{u, v\}$ is the smallest subspace containing u and v. We know that span$\{u, v\}$ is already a subspace, since it is closed under any linear combinations. And the above argument shows us that any subspace containing u and v also contains span$\{u, v\}$, i.e. is bigger than the span of these two vectors. So the span of the two vectors must be the smallest such subspace.

32. The intersection of two subspaces is a subspace. But the union of two subspaces might not be a subspace.

If we have H and K two subspaces of V, we can check our three requirements to see that $H \cap K$ will also be a subspace of V.

- **Zero vector**: Because both H and K are subspaces of V, they must both contain 0. And so their intersection $H \cap K$ will also contain the zero vector.
- **Scaling**: If we start with some v that is in $H \cap K$, then v is in both H and K. Now consider scaling v to get kv. Since both H and K are subspaces closed under scaling, kv will remain in H and it will remain in K. So we see that kv is still in both H and K, i.e. v is in $H \cap K$.
- **Addition**: Start with two vectors u and v in $H \cap K$. Then u and v will be in both H and K. Now because H and K are subspaces closed under addition, we will get that $v + u$ remains in H and remains in K. So finally, we get that $v + u$ remains in $H \cap K$.

This shows that the intersection of subspaces will still be a subspace. But we can come up with some simple examples where the union of subspaces is not a subspace. For instance, inside of \mathbb{R}^2, we can consider the subspaces of the form $\begin{bmatrix} x \\ x \end{bmatrix}$ and $\begin{bmatrix} x \\ -x \end{bmatrix}$. These are just two lines in the plane. However, the union is not closed under addition. For instance $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ -2 \end{bmatrix}$ will both be in the union. But adding them gives us $\begin{bmatrix} 4 \\ 0 \end{bmatrix}$, which is not in the union.