
Math 54 Fall 2016 Practice Midterm 2 Solutions

Nikhil Srivastava

50 minutes, closed book, closed notes

1. True or False (no need for justification):

(a) If V is a vector space with a finite basis then V is isomorphic to Rn for some n.

True. If B = {b1, . . . , bn} is a basis then the coordinate mapping x 7→ [x]B is an
isomorphism from V to Rn.

(b) The system ATAx = AT b is consistent for all A and b.

True. This is because the least squares solution to Ax = b (i.e., the x minimizing
‖Ax− b‖) always satisfies the normal equations.

(c) If A and B are similar and A is diagonalizable then B must be diagonalizable.

True. If A is diagonalizable then A = PDP−1 for some diagonal P . Since A
and B are similar, we have B = QAQ−1 for some Q. Combining these, we get
B = QPDP−1Q−1 = (QP )D(QP )−1, so B is diagonalizable as well.

(d) The rank of a square matrix is equal to the number of nonzero eigenvalues (counted
with multiplicity).

False. Consider the matrix

[
0 1
0 0

]
, which has only zero eigenvalues, but rank 1.

This was one of the the hardest questions on the exam, because it is almost true.
In particular, if A is n×n and diagonalizable, then the dimension of the nullspace
of A is equal to the multiplicity m of zero as an eigenvalue (since the dimension
of E0 is equal to this multiplicity). Thus, the number of nonzero eigenvalues of A
is n−m, which is also equal to the rank since m+ rank(A) = n.

(e) If x and y are arbitrary nonzero vectors in Rn then there is a basis B of Rn such
that [x]B = y.

True. This was the hardest one. The question is asking whether there is an
invertible matrix PB such that PBy = x (the columns of such a matrix would then
form the basis B). To find such a matrix, first choose any basis C whose first
vector is x, namely c1 = x, c2, c3, . . . , cn, and let PC be the matrix whose columns
are c1, . . . , cn. Similarly, let D be a basis whose first vector is d1 = y, d2, . . . , dn.
(Note that for any vector, there is a basis containing that vector). We now have
[x]C = P−1C x = e1 and [y]D = P−1D y = e1, so

P−1D y = P−1C x.
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Multiplying by PD gives y = PDP
−1
C x, so the desired PB is just PDP

−1
C .

(f) Every eigenvalue of a square matrix A is a pivot of A in the reduced row echelon
form of A.

False. The RREF of every invertible matrix is the identity, but not every invertible
matrix has all eigenvalues equal to one.

(g) If A is a square matrix then A and AT have the same eigenvalues.

True. This is because det(A − tI) = det((A − tI)T ) = det(AT − tI), which may
be seen by using the cofactor expansion of the determinant. So A and AT have
the same characteristic polynomial, which means they have the same eigenvalues.

(h) An upper triangular matrix is always diagonalizable.

False. Consider

[
0 1
0 0

]
.

(i) An set of orthogonal vectors is always linearly independent.

False. An orthogonal set can contain a zero vector, which would make it auto-
matically linearly dependent.

I did not intend to ask such a trick question, I missed the word ’nonzero’, which is
a typo. I really should have asked: is a set of nonzero orthogonal vectors linearly
independent? In this case the answer is yes.

(j) If v1, . . . , vk ∈ Rn are linearly independent and W is a subspace of Rn then
ProjW (v1), . . . ,ProjW (vk) must also be linearly independent.

False. Consider the subspace W = span{e1} of R2. Then {e1, e2} is linearly
independent, but ProjW (e2) = 0, so the set of projections is not.

2. Let V = R3×3 denote the vector space of real 3× 3 matrices with addition and scalar
multiplication defined entrywise. Let

M =

1 2 3
4 5 6
7 8 9


and consider the subset

W = {X ∈ V : XM = MX}

of matrices in V which commute with M . Is W a subspace of V ? If so, prove it. If
not, explain why.

Solution: This question just involves knowing how to check whether a given set is a
subspace. Recall that this requires satisfying three properties: (a) The zero matrix
0 ∈ W , since 0M = 0 = M0. (b) Assume X, Y ∈ W , which means that XM = MX
and YM = MY . Adding these equations, we find that

XM + YM = MX +MY.
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By the distributive property from matrix algebra, this is equivalent to

(X + Y )M = M(X + Y ),

which implies that X + Y ∈ W . (c) Assume X ∈ W and c ∈ R. We know XM =
MX. Multiplying by C gives cXM = cMX. Again by matrix algebra, this is just
(cX)M = M(cX), so cX ∈ W .

Since W is a subset of V , contains zero, and is closed under addition and scalar
multiplication, W is a subspace of V .

Note that the actual details of the matrix M did not matter in this case.

3. Let P2 = {a0 + a1t+ a2t
2} be the vector space of polynomials of degree at most 2 with

coefficient-wise operations, and consider the linear transformation T : P2 → P2 defined
by

T (q) =
d2

dt2
q + t · d

dt
q + 3q.

Is there a basis B of P2 such that the matrix of T with respect to B is diagonal? If so,
find such a basis as well as the corresponding matrix. If not, explain why.

Solution. This question is asking whether T is diagonalizable, To figure this out,
we first find the matrix of T with respect to any basis; let’s use the standard basis
E = {1, t, t2} of P2. Computing

[T (1)]E = [0 + 0 + 3]E =

3
0
0

 ,
[T (t)]E = [0 + t+ 3t]E =

0
4
0

 ,
[T (t2)]E = [2 + 2t2 + 3t2]E =

2
0
5

 ,
we find that the matrix is given by

A = [T ]E =

3 0 2
0 4 0
0 0 5

 .
Since this matrix is upper triangular, its eigenvalues are just the diagonal entries, which
are 3, 4, 5. Since these are distinct, we know that the matrix must be diagonalizable.
To find the basis, we find the corresponding eigenvectors:

E3 = Null(A− 3I) = span{e1},
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E4 = Null(A− 4I) = span{e2},

E5 = Null(A− 5I) = Null

−2 0 2
0 −1 0
0 0 0

 = span{

1
0
1

}.
Thus, Ae1 = 3e1, Ae2 = 4e2, and A(e1 + e3) = 5(e1 + e3). Applying the correspondence
principle, we find that, T (1) = 3, T (t) = 4t, T (1 + t2) = 5(1 + t2). Thus the matrix of
T with respect to the basis B = {1, t, 1 + t2} is diagonal, and equal to

[T ]B =

3 0 0
0 4 0
0 0 5

 .
Alternatively, we may diagonalize [T ]E = A = PDP−1 = PBDP

−1
B for D as above and

PB containing e1, e2, (e1 + e3) as columns. Multiplying on the left by P−1B and on the
right by PB we have P−1B [T ]EPB = D. Recalling that P−1B = PB←E and PB = PE←B,
we have

D = PB←E[T ]EPE←B = [T ]B,

as desired.

4. Let A =

[
1 1
−2 4

]
. Find the eigenvalues of A. Compute A11.

Solution: We begin by computing the characteristic polynomial:

χA(t) = det

[
1− t 1
−2 4− t

]
= (1− t)(4− t) + 2 = t2 − 5t+ 6 = (t− 2)(t− 3),

so the eigenvalues are 2, 3. The corresponding eigenspaces are

E2 = Null

[
−1 1
−2 2

]
= span{

[
1
1

]
},

E3 = Null

[
−2 1
−2 1

]
= span{

[
1
2

]
},

so we may diagonalize A as A = PDP−1 with D =

[
2 0
0 3

]
and P =

[
1 1
1 2

]
.

We now have

A11 = PD11P−1 =

[
1 1
1 2

] [
211 0
0 311

] [
2 −1
−1 1

]
.

I could simplify this, but I won’t. I’ll give you easier numbers on the exam if such a
question arises, and in any case, it will be fine to leave expressions such as 2 · 211− 311

unsimplified.
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5. Consider the vectors

x1 =


2
0
−1
−3

 x2 =


12
−4
7
1

 y =


2
4
0
−1

 ,
and let W = Span{x1, x2}. Find vectors w and z such that w ∈ W, z ∈ W⊥, and
y = w + z. What is the distance between y and the closest point in W to y?

Solution: We first check whether the given vectors are orthogonal: x1 · x2 = 24 + 0−
7 − 3 = 14 6= 0, so they aren’t. So we use Gram-Schmidt to find an orthogonal basis
for W :

u1 = x1

u2 = x2 −
x2 · u1
u1 · u1

u1 =


12
−4
7
1

− 14

14


2
0
−1
−3

 =


10
−4
8
4

 .
We now use the decomposition theorem to find the desired vectors:

w = ProjW (y) =
y · u1
u1 · u1

u1+
y · u2
u2 · u2

u2 =
4 + 0 + 0 + 3

14
u1+

20− 16 + 0− 4

100 + 16 + 64 + 16
u2 =


1
0
−1/2
−3/2

 ,

z = y − w =


1
4

1/2
1/2

 .
Since w is the closest point in W to y, the distance is given by

‖z‖ =
√

1 + 16 + 1/4 + 1/4 =
√

35/2.

6. Let W be a subspace of Rn and let P be the standard matrix of the projection onto W ,
i.e., P = [ProjW ] where ProjW : Rn → Rn is the linear transformation which projects
onto W . (a) Show that P 2 = P . (b) Use this to show that the eigenvalues of P are all
either 0 or 1. (c) What is the eigenspace corresponding to the eigenvalue 1 of P?

Solution: (a) There are several ways to show this:

Conceptual Way: Observe that for every vector w ∈ W , we have w = w + 0 where
w ∈ W and 0 ∈ W⊥. Since the decomposition theorem says this is unique, this
implies that ProjW (w) = w for every w ∈ W . Thus, for every vector x ∈ Rn we have
ProjW (ProjW (x)) = ProjW (x) since ProjW (x) ∈ W . Thus, the linear transformations
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ProjW : Rn → Rn and ProjW ◦ ProjW : Rn → Rn are the same, which means that
their standard matrices must be the same. But since [ProjW ] = P and composition
corresponds to matrix multiplication, this means that P 2 = P .

Algebraic way: Let u1, . . . , uk be an orthonormal basis for W (by Gram-Schmidt such
a basis exists) and let U be the n × k matrix with u1, . . . , uk as columns. Recall
from lecture that P = UUT and UTU = Ik. Thus we have P 2 = (UUT )(UUT ) =
U(UTU)UT = U(I)UT = UUT = P .

(b) Assume λ is an eigenvalue of P . Then Px = λx for some nonzero vector x. Since
P 2 = P we also have

Px = P 2x = P (Px) = P (λx) = λPx = λ2x.

Thus we must have λ2x = λx, which since x 6= 0 means λ2 = λ. Thus we must have
λ = 0 or 1.

(c) The eigenspace corresponding to λ = 1 is the set of vectors x such that Px = x,
which means ProjW (x) = x, which happens if and only if x ∈ W . Thus the eigenspace
is simply equal to W .
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