1. True or False (no need for justification):

(a) If V is a vector space with a finite basis then V is isomorphic to \mathbb{R}^n for some n.
(b) The system $A^T Ax = A^T b$ is consistent for all A and b.
(c) If A and B are similar and A is diagonalizable then B must be diagonalizable.
(d) The rank of a square matrix is equal to the number of nonzero eigenvalues (counted with multiplicity).
(e) If x and y are arbitrary nonzero vectors in \mathbb{R}^n then there is a basis B of \mathbb{R}^n such that $[x]_B = y$.
(f) Every eigenvalue of a square matrix A is a pivot of A in the reduced row echelon form of A.
(g) If A is a square matrix then A and A^T have the same eigenvalues.
(h) An upper triangular matrix is always diagonalizable.
(i) An set of orthogonal vectors is always linearly independent.
(j) If $v_1, \ldots, v_k \in \mathbb{R}^n$ are linearly independent and W is a subspace of \mathbb{R}^n then $\text{Proj}_W(v_1), \ldots, \text{Proj}_W(v_k)$ must also be linearly independent.

2. Let $V = \mathbb{R}^{3\times3}$ denote the vector space of real 3×3 matrices with addition and scalar multiplication defined entrywise. Let

$$M = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

and consider the subset

$$W = \{ X \in V : XM = MX \}$$

of matrices in V which commute with M. Is W a subspace of V? If so, prove it. If not, explain why.
3. Let \(P_2 = \{a_0 + a_1 t + a_2 t^2\} \) be the vector space of polynomials of degree at most 2 with coefficient-wise operations, and consider the linear transformation \(T : P_2 \to P_2 \) defined by

\[
T(q) = \frac{d^2}{dt^2}q + t \cdot \frac{d}{dt}q + 3q.
\]

Is there a basis \(B \) of \(P_2 \) such that the matrix of \(T \) with respect to \(B \) is diagonal? If so, find such a basis as well as the corresponding matrix. If not, explain why.

4. Let \(A = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix} \). Find the eigenvalues of \(A \). Compute \(A^{11} \).

5. Consider the vectors

\[
x_1 = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} \quad x_2 = \begin{bmatrix} 12 \\ -4 \\ 7 \end{bmatrix} \quad y = \begin{bmatrix} 2 \\ 4 \\ 0 \\ -1 \end{bmatrix},
\]

and let \(W = \text{Span}\{x_1, x_2\} \). Find vectors \(w \) and \(z \) such that \(w \in W, z \in W^\perp \), and \(y = w + z \). What is the distance between \(y \) and the closest point in \(W \) to \(y \)?

6. Let \(W \) be a subspace of \(\mathbb{R}^n \) and let \(P \) be the standard matrix of the projection onto \(W \), i.e., \(P = [\text{Proj}_W] \) where \(\text{Proj}_W : \mathbb{R}^n \to \mathbb{R}^n \) is the linear transformation which projects onto \(W \). (a) Show that \(P^2 = P \). (b) Use this to show that the eigenvalues of \(P \) are all either 0 or 1. (c) What is the eigenspace corresponding to the eigenvalue 1 of \(P \)?