
Math 54 Fall 2016 Practice Midterm 1

Nikhil Srivastava

closed book, closed notes

1. True or False:

(a) If the reduced row echelon form of the augmented matrix of a linear system has
a column containing only zeros, then it must be consistent.

False. A column of zeros does not say anything about a pivot in the augmented
column, which is the relevant test for consistency.

(b) If the columns of A are linearly independent, then Ax = b is consistent for every
b.

False. Linear independence of the columns implies uniqueness but not existence.

(c) If A has linearly dependent columns, then Ax = 0 is has infinitely many solutions.

True. If A has linearly dependent cols there is a nontrivial solution, so there must
be infinitely many solutions.

(d) If A is an m×n matrix and b ∈ Rm, then the set of solutions to Ax = b is a linear
subspace of Rn.

False. This is true for b = 0 but not in general. This may be verified algebraically.
Geometrically, the solution set of Ax = b is a translation of a plane through the
origin.

(e) If a linear subspace of Rn contains more than one vector, then it must contain
infinitely many vectors.

True. If it has more than one vector it must have a nonzero vector, and all scalar
mutliples of this vector must also be in the subspace.

(f) If T : R2 → R3 is a linear transformation then T cannot be both 1− 1 and onto.

True. In particular, the columns of the standard matrix of T cannot be linearly
independent, since there are three columns in R2, so T cannot be 1− 1.

(g) If A is an m × n matrix and B is an n × p matrix whose first column contains
only zeros, then the first column of AB also contains only zeros.

True. By the columnwise definition of matrix vector multiplication, the first
column of B is b1 then the first column of AB is Ab1.
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(h) If A,B,C are invertible then the product ABC must also be invertible.

True. The inverse is C−1B−1A−1.

(i) If A is a square matrix such that A2 = 0 then A = 0.

False. Consider the matrix A =

[
0 1
0 0

]
.

(j) If A and B are square matrices of rank 2 then the product AB has rank at most
2.

True. The rank of a matrix is the dimension of the span of its columns, which
is the maximum number of linearly independent columns. Assume A is m × n
and B is n × p. Let b1, . . . , bp be the columns of B. Since B has rank 2, every
subset of three columns of B is linearly dependent. Since the columns of AB
are Ab1, . . . , Abp, every subset of three columns of AB is also linearly dependent,
since multiplication by A preserves linear dependencies. Thus, AB has rank at
most 2.

2. Let A =

[
1 1 1
0 1 0

]
. Find a 3× 2 matrix B such that AB =

[
1 0
0 1

]
.

Solution: Letting b1 and b2 denote the (unknown) columns of B, we observe that this
is equivalent to solving the matrix equations:

Ab1 =

[
1
0

]
Ab2 =

[
0
1

]
,

which have augmented matrices[
1 1 1 1
0 1 0 0

] [
1 1 1 0
0 1 0 1

]
.

Applying row reduction we obtain the RREF:[
1 0 1 1
0 1 0 0

] [
1 0 1 −1
0 1 0 1

]
,

so both systems have infinitely many solutions, given by

b1 =

1− x3
0
x3

 b2 =

−1− x3
1
x3

 ,
where x3 is a free variable. Thus, there are infinitely many possibilities for B, given by

B =

1− x3 −1− x3
0 1
x3 x3

 ,
and a particular B can be found by plugging in (for instance) x3 = 0.
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3. Consider the vectors

v1 =


1
2
3
4

 , v2 =


1
−1
0
1

 , v3 =


3
0
3
6

 , v4 =


0
1
0
1

 , v5 =


2
2
3
6

 .
(a) Let H = span{v1, v2, v3, v4, v5}. Find a subset of the given vectors which forms a

basis for H.

(b) What is the dimension of H?

(c) Determine whether the vector

w =


2
0
3
4


lies in H.

Solution:

(a) The desired subspace is the column space of the matrix with the vi as columns,
namely:

A =


1 1 3 0 2
2 −1 0 1 2
3 0 3 0 3
4 1 6 1 6

 .
Recall that a basis for the column space is given by the columns of A corresponding
to the pivot columns of the REF of A. Applying row reduction (details omitted),
we obtain the REF:

R =


1 1 3 0 2
0 −3 −6 1 −2
0 0 0 −1 −1
0 0 0 0 0

 .
Since the first, second, and fourth columns are pivot columns, a basis for the
column space is given by {v1, v2, v4}.

(b) The dimension of H is three, since it has a basis with three vectors.

(c) To test whether w is in H = span{v1, v2, v4}, we must solve the linear system
with augmented matrix: 

1 1 0 2
2 −1 1 0
3 0 0 3
4 1 1 4

 .
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The REF of this matrix is 
1 1 0 2
0 −3 1 −2
0 0 −1 −1
0 0 0 0

 .
This system is consistent, so indeed w is in the subspace.

4. Let T1 : R3 → R2 be the linear transformation defined by

T1

x1x2
x3

 =

[
x1

x2 + x3

]
,

and let T2 : R2 → R2 be the linear transformation which rotates a vector about the
origin by π/4 radians counterclockwise.

(a) Determine the standard matrix of the composition T2 ◦ T1 : R3 → R2 defined by
applying T1 and then T2.

(b) Determine whether T2 ◦ T1 is onto.

(c) Determine whether T2 ◦ T1 is one to one.

Solution:

(a) To find the standard matrix of T = T2 ◦ T1, we apply it to the standard basis of
R3: 1

0
0

 7→ [
1
0

]
7→
[
1/
√

2

1
√

2

]
,

0
1
0

 7→ [
0
1

]
7→
[
−1/
√

2

1/
√

2

]
,

0
0
1

 7→ [
0
1

]
7→
[
−1/
√

2

1/
√

2

]
,

where the first arrows indicate application of T1 : R3 → R2 and the second indicate
T2 : R2 → R2. The standard matrix is the 2 × 3 matrix with T (e1), T (e2), T (e3)
as columns, namely:

A =
1√
2

[
1 −1 −1
1 1 1

]
.
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(b) To determine whether T is onto, we recall that this is equivalent to the columns
of its standard matrix spanning R2, which is equivalent to having a pivot in every
row. Subtracting the first row from the second, we find that a REF of A is:

1√
2

[
1 −1 1
0 2 2

]
,

which has this property, so T must be onto.

(c) Recall that T is one to one if and only if the columns of its standard matrix are
linearly independent. Since 3 vectors in R2 cannot be linearly independent, we
conclude that T is not one to one.

5. (a) Give an example of a 3× 3 matrix whose null space has dimension 1.

(b) Give an example of a 3× 3 matrix whose column space has dimension 1.

(c) Is there a 3 × 3 matrix whose null space and column space both have dimension
1?

Solution:

(a) The dimension of the null space of a matrix is equal to the number of free variables
in its REF. So the matrix 1 0 ∗

0 1 ∗
0 0 0


has a null space of dimension one, where ∗ indicates any number.

(b) The dimension of the column space of a matrix is the number of pivot columns.
So any matrix of type 1 ∗ ∗

0 0 0
0 0 0


has a column space of dimension one.

(c) No, there is no such matrix, because the dimension theorem tells us that the sum
of the dimensions of the row space and column space is equal to 3 for any matrix
with 3 columns, and we have 1 + 1 6= 3.
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