Homework 7 Answers

Math 54 - Fall 2016

Section 4.7

4.7.3 \quad With $\mathcal{U}=\left\{u_{1}, u_{2}\right\}, \mathcal{W}=\left\{w_{1}, w_{2}\right\} . P[x]_{\mathcal{W}}=[x]_{\mathcal{U}}$.

Think of if the action of P on the basis $\mathcal{U} . P$ on $\left[u_{1}\right]_{\mathcal{U}}=\left[\begin{array}{c}1 \\ 0 \\ \vdots\end{array}\right]$ will return the first column of $P-$ which is $\left[u_{1}\right]_{\mathcal{W}}$. So (ii.) should be satisfied, but not (i.).
4.7.7 $\quad P_{B}=\left[\begin{array}{ll}7 & -3 \\ 5 & -1\end{array}\right], P_{C}=\left[\begin{array}{cc}1 & -2 \\ -5 & 2\end{array}\right] . P_{C \leftarrow B}=P_{C}^{-1} P_{B}$. and $P_{B \leftarrow C}=P_{B}^{-1} P_{C}$. We can either compute these by computing the inverses, and then multiplying or by row-reducing the matrices

$$
\left[P_{C} \mid P_{B}\right] \sim\left[I \mid P_{C \leftarrow B}\right]
$$

and likewise for $P_{B \leftarrow C}$. In any case, $P_{C}^{-1}=\left[\begin{array}{ll}-1 / 4 & -1 / 4 \\ -5 / 8 & -1 / 8\end{array}\right], P_{B}^{-1}=\left[\begin{array}{ll}-1 / 8 & 3 / 8 \\ -5 / 8 & 7 / 8\end{array}\right]$ so

$$
P_{C \leftarrow B}=\left[\begin{array}{ll}
-3 & 1 \\
-5 & 2
\end{array}\right], P_{B \leftarrow C}=\left[\begin{array}{ll}
-2 & 1 \\
-5 & 3
\end{array}\right] .
$$

4.7.8 $\quad P_{B}=\left[\begin{array}{cc}-1 & 1 \\ 8 & -7\end{array}\right], P_{C}=\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right] . P_{C \leftarrow B}=P_{C}^{-1} P_{B}$. and $P_{B \leftarrow C}=P_{B}^{-1} P_{C}$. We can either compute these by computing the inverses, and then multiplying or by row-reducing the matrices

$$
\left[P_{C} \mid P_{B}\right] \sim\left[I \mid P_{C \leftarrow B}\right]
$$

and likewise for $P_{B \leftarrow C}$. In any case, $P_{C}^{-1}=\left[\begin{array}{cc}-1 & 1 \\ 2 & -1\end{array}\right], P_{B}^{-1}=\left[\begin{array}{ll}7 & 1 \\ 8 & 1\end{array}\right]$ so

$$
P_{C \leftarrow B}=\left[\begin{array}{cc}
9 & -8 \\
-10 & 9
\end{array}\right], P_{B \leftarrow C}=\left[\begin{array}{cc}
9 & 8 \\
10 & 9
\end{array}\right] .
$$

4.7.13

The change of basis matrix from B to standard coordinates is the matrix with columns of B represented in standard coordinates. So $P_{S \leftarrow B}=\left[\begin{array}{ccc}1 & 3 & 0 \\ -2 & -5 & 2 \\ 1 & 4 & 3\end{array}\right]$. To find the B-coordinates
of $-1+2 t$ we are looking for the solution to $P v=\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right]$. Row reducing this linear system, we have $v=\left[\begin{array}{c}41 \\ -14 \\ 5\end{array}\right]$.
4.7.14 As in the previous problem, the change of basis matrix to standard coordinates has columns the vectors of B in standard coordinates. So $P_{S \leftarrow B}=\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & 1 & 2 \\ -3 & -5 & 0\end{array}\right]$. To find B-coordinates of t^{2} we are looking for the v so that $P v=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Row-reducing, we get $v=\left[\begin{array}{c}3 \\ -2 \\ 1\end{array}\right]$
4.7.20.a $\quad P_{D \leftarrow B}=P_{D \leftarrow C} P_{C \leftarrow B}$. The matrix on the left takes in vectors in B coordinates, and outputs their D coordinates. The product on the right takes in vectors with B coordinates, converts them to C coordinates, then converts them to D coordinates. This is the same as just converting them to D coordinates right away. Alternatively, $P_{D \leftarrow C} P_{C \leftarrow B}=P_{D}^{-1} P_{C} P_{C}^{-1} P_{B}=$ $P_{D}^{-1} P_{B}=P_{D \leftarrow B}$.

Section 4.5

4.5.9 The subspace is the set of $\left[\begin{array}{l}x \\ y \\ x\end{array}\right]$. This is clearly spanned by $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$. These are linearly independent, so the dimension is 2 .
4.5.11 This is just the dimension of column space of

$$
\left[\begin{array}{cccc}
1 & 3 & -2 & 5 \\
0 & 1 & -1 & 2 \\
2 & 1 & 1 & 2
\end{array}\right] .
$$

This row-reduces to

$$
\left[\begin{array}{cccc}
1 & 3 & -2 & 5 \\
0 & 1 & -1 & 2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The number of pivot columns is 3 so the dimension is 3 .
4.5.25 $B=\left\{1,1-t, 2-4 t+t^{2}\right\} . p=5+5 t-2 t^{2}$. To find the B coordinates, we solve the linear system $a_{1}(1)+a_{2}(1-t)+a_{3}\left(2-4 t+t^{2}\right)=p$. So we row-reduce

$$
\left[\begin{array}{ccc|c}
1 & 1 & 2 & 5 \\
0 & -1 & -4 & 5 \\
0 & 0 & 1 & -2
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 0 & 0 & 6 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -2
\end{array}\right]
$$

So the coordinates are $\left[\begin{array}{c}6 \\ 3 \\ -2\end{array}\right]$.
4.5.26 Pick a basis for H, say B. B is a linearly independent set. Suppose v is in V, but not in H. Then $B \cup\{v\}$ is linearly independent, since v is not in the span of $B-H$. But then we would have $n+1$ linearly independent vectors in an n-dimensional vector space. This is silly. So $H=V$.
4.5.27 The space of polynomials is infinite-dimensional space, because any basis would have to have $1, x, x^{2}, x^{3}, \ldots$, as linear combinations of its elements. As these elements are linearly inepenent, there have to be at least as many basis elements as these - so infinitely many.
4.5.30 a.) No. $\{1,1\}$ is a linearly dependent set in \mathbb{P}^{2}, but clearly this has dimension greater than 2 . b.) Yes. If every set of p elements cannot span V, then any basis of V must have more than p elements. So $\operatorname{dim} V>p$. c.) No. In $\mathbb{P}^{2},\{1,1\}$ is linearly dependent.
4.5.31x Pick a basis for $T(H)$, say w_{1}, \ldots, w_{k}. Then there exist v_{1}, \ldots, v_{k} in H so that $T\left(v_{i}\right)=$ w_{i}. T maps linearly dependent sets to linearly dependent sets. So $v_{1}, . ., v_{k}$ must be linearly independent, since w_{i} are. A basis is a maximally linearly independent set, so $\operatorname{dim} H \geq k=\operatorname{dim} T(H)$.

Section 3.1

3.1.4

$$
\left|\begin{array}{lll}
1 & 3 & 5 \\
2 & 1 & 1 \\
3 & 4 & 2
\end{array}\right|=1\left|\begin{array}{ll}
1 & 1 \\
4 & 2
\end{array}\right|-3\left|\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right|+5\left|\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right|=1(2-4)-3(4-3)+5(8-3)=20
$$

$$
\left|\begin{array}{lll}
1 & 3 & 5 \\
2 & 1 & 1 \\
3 & 4 & 2
\end{array}\right|=-3\left|\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right|+1\left|\begin{array}{ll}
1 & 5 \\
3 & 2
\end{array}\right|-4\left|\begin{array}{ll}
1 & 5 \\
2 & 1
\end{array}\right|=-3(4-3)+1(2-15)-4(1-10)=-3-13+36=20
$$

3.1.22

$$
\left|\begin{array}{cc}
a+k c & b+k d \\
c & d
\end{array}\right|=a d+k c d-b c-k d c=a d-b c=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right| .
$$

Adding a multiple of a row to another row does not change the determinant.

3.1.25

$$
\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & k & 1
\end{array}\right|=1\left|\begin{array}{ll}
1 & 0 \\
k & 1
\end{array}\right|-0\left|\begin{array}{ll}
0 & 0 \\
k & 1
\end{array}\right|+0\left|\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right|=1(1-0 k)=1
$$

3.1.38 $\left|\begin{array}{ll}k a & k b \\ k c & k d\end{array}\right|=k^{2} a d-k^{2} a b=k^{2}\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$.
3.1.43x No this is not true. Note that

$$
\left|\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right|+\left|\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right|=0+0 \neq 1=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right| .
$$

Section 3.2

3.2.6
$\left|\begin{array}{ccc}1 & 5 & -3 \\ 3 & -3 & 3 \\ 2 & 13 & -7\end{array}\right|=\left|\begin{array}{ccc}1 & 5 & -3 \\ 0 & -18 & 12 \\ 0 & 3 & -1\end{array}\right|=\left|\begin{array}{ccc}1 & 5 & -3 \\ 0 & 0 & 6 \\ 0 & 3 & -1\end{array}\right|=6\left|\begin{array}{ccc}1 & 5 & 0 \\ 0 & 0 & 1 \\ 0 & 3 & 0\end{array}\right|=6(3)\left|\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right|=-6(3)\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|=-18$
3.2.7

$$
\left|\begin{array}{cccc}
1 & 3 & 0 & 2 \\
-2 & -5 & 7 & 4 \\
3 & 5 & 2 & 1 \\
1 & -1 & 2 & -3
\end{array}\right|=\left|\begin{array}{cccc}
1 & 3 & 0 & 2 \\
0 & 1 & 7 & 8 \\
0 & -4 & 2 & -5 \\
0 & -4 & 2 & -5
\end{array}\right|=\left|\begin{array}{cccc}
1 & 3 & 0 & 2 \\
0 & 1 & 7 & 8 \\
0 & 0 & 30 & 27 \\
0 & 0 & 0 & 0
\end{array}\right|=0,
$$

since the determinant of an upper triangular matrix is the product of the diagonal elements.
3.2.16

$$
\left|\begin{array}{ccc}
a & b & c \\
3 d & 3 e & 3 f \\
g & h & i
\end{array}\right|=3\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=3 * 7=21 .
$$

3.2.22

$$
\left|\begin{array}{ccc}
5 & 0 & -1 \\
1 & -3 & -2 \\
0 & 5 & 3
\end{array}\right|=5\left|\begin{array}{cc}
-3 & -2 \\
5 & 3
\end{array}\right|-\left|\begin{array}{cc}
1 & -3 \\
0 & 5
\end{array}\right|=5(-9+10)-(5-0)=0 .
$$

So the matrix is not invertible.
3.2.27 a.) Row replacement may affect a determinant. Scaling the row scales the determinant. b.) This is true. Only scaling and swapping affect the determinant. Swapping is taken care of by the -1 product, and the scaling is just the product of the pivots. c.) If the columns of A are linearly dependent, the matrix is not invertible, so the determinant is 0 . d.) This is false. The example in 3.1 .43 x is a counterexample.

3.2.29

$$
\left|\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 2 \\
1 & 2 & 1
\end{array}\right|=\left|\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
2 & 0 & =
\end{array}\right|-2 *\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|=-2
$$

The determinant of a product is the product of the determinants, so det $B^{5}=-32$.
3.2.32 $\operatorname{det}(r A)=r^{n} \operatorname{det} A$. Thm 3 on all n rows.
3.2.33x $\operatorname{det}(A B)=\operatorname{det} A \operatorname{det} B=\operatorname{det} B \operatorname{det} A=\operatorname{det}(B A)$. Thm 6
3.2.34 $\operatorname{det}\left(P A P^{-1}\right)=\operatorname{det}(P A) \operatorname{det} P^{-1}=\operatorname{det} P^{-1} \operatorname{det}(P A)=\operatorname{det}\left(P^{-1} P\right) \operatorname{det} A=$ 1 det A. Thm 6

Section 5.1

5.1.2 $\left[\begin{array}{cc}-1 & 4 \\ 6 & 9\end{array}\right] \cdot-3$ not because $\left[\begin{array}{ll}2 & 4 \\ 6 & 6\end{array}\right]$ is rank 2, so is invertible.

5.1.7

$$
\left[\begin{array}{ccc}
-1 & 0 & -1 \\
2 & -1 & 1 \\
-3 & 4 & 1
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & -1 & -1 \\
0 & 4 & 4
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

so $\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]$ is an eigenvector with eigenvalue 4.
5.1.16

$$
\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
1 & -1 & 0 & 0 \\
2 & -1 & -1 & 0 \\
4 & -2 & -2 & 0
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

so the eigenvectors for $\lambda=4$ are

Taking $a=1$, we get a basis for this eigenspace.
5.1.20 0 is an eigenvalue with eigenvectors $\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$. This matrix has rank 1 so the eigenspace for 0 has dimension 2. Clearly these vectors are linearly independent.
5.1.21 a.) True, this is the definition of an eigenvalue. b.) True. The 0 eigenspace is just the null space. If it is not-trivial, then it is not invertible. c.)True. If $(A-c I) v=0$, for some non-zero v, then $A v=c v$, so c is an eigenvalue. d.) True. If v is an eigenvector, $A v=\lambda v$, so we can check for linear dependence quickly. e.) False. To find eigenvalues, check when $A-\lambda I$ is not-invertible with the determinant. Row reduction does not help us here.
5.1.24 $\quad\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ has only the eigenvalue 1 , as $A v=v$ for all v. So also every vector is an eigenvector for this value.
5.1.25 If $A x=\lambda x$, then $x=A^{-1}(\lambda x)=\lambda A^{-1} x$, so $x / \lambda=A^{-1} x$, and $1 / \lambda$ is an eigenvalue of A^{-1}.
5.1.29 Let v be the column vector with 1 in each entry. Then $A v$ is the column vector consisting of row sums of A, but then this is $s v$, since each row sum is s. Thus $A v=s v$.
5.1.32
a.) $x_{k+1}=c_{1} \lambda^{k+1} u+c_{2} \mu^{k+1} v$. b.) $A x_{k}=c_{1} \lambda^{k} A u+c_{2} \mu^{k} A v=c_{1} \lambda^{k+1} u+c_{2} \mu^{k+1} v=$ x_{k+1}.

Section 5.2

5.2.4

$$
\left|\begin{array}{cc}
8-\lambda & 2 \\
3 & 3-\lambda
\end{array}\right|=(8-\lambda)(3-\lambda)-6=\lambda^{2}-11 \lambda+18=(\lambda-2)(\lambda-9),
$$

so the eigenvalues are 2 and 9 .

5.2.10

$\left|\begin{array}{ccc}3-\lambda & 1 & 1 \\ 0 & 5-\lambda & 0 \\ -2 & 0 & 7-\lambda\end{array}\right|=(3-\lambda)(5-\lambda)(7-\lambda)+1(0)(-2)+1(0)(0)-(-2)(5-\lambda)(1)-0(0)(3-\lambda)-(7-\lambda)(0)(1)=$

5.2.19

$$
\operatorname{det}(A-\lambda I)=\left(\lambda_{1}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right)
$$

so

$$
\operatorname{det}(A-0 I)=\operatorname{det} A=\left(\lambda_{1}-0\right) \cdots\left(\lambda_{n}-0\right)=\lambda_{1} \lambda_{2} \cdots \lambda_{n}
$$

