SID: \qquad

GSI: \qquad

Name of the student to your left:
NAME OF THE STUDENT TO YOUR RIGHT:
Instructions: Write all answers clearly in the provided space. This exam includes some space for scratch work at the bottom of pages 2 and 4 which will not be graded. Do not under any circumstances unstaple the exam. Write your name and SID on every page. Show your work - numerical answers without justification will be considered suspicious and will not be given full credit. Calculators, phones, cheat sheets, textbooks, and your own scratch paper are not allowed.
UC Berkeley Honor Code: As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others.

Sign here:

Question	Points
1	14
2	14
3	12
4	8
5	14
6	12
7	12
8	14
Total:	100

Do not turn over this page until your instructor tells you to do so.
\qquad

1. Let E be the solid region bounded from above by the surface $z^{2}=x^{2}+y^{2}$, from below by the plane $z=0$, and from the sides by the surface $x^{2}+y^{2}=1$.
(a) (4 points) Draw a rough sketch of E.

(b) (10 points) Set up and evaluate a double integral equal to the volume of E.

$$
\begin{aligned}
& V_{0}(E)=\text { Volume under the graph of } z=\sqrt{x^{2}+y^{2}} \\
& \text { above the domain } D=\left\{(x, y): x^{2}++^{2} \leq 1\right\} \text {. } \\
& =\iint \sqrt{x^{2}+y^{2}} d A \text {. Sine } D \text { ais the function are } \\
& \text { radially syumelx, polar coaruaks } \\
& \text { should help. } \\
& D=\{(r, \theta): 0 \leq \theta \leq 2 \pi, 0 \leq r \leq 1\} \\
& \sqrt{x^{2}+y^{2}} \rightarrow \sqrt{r^{2} \cos ^{2} \theta+r^{2} s^{2} \theta}=\sigma \\
& d A \longrightarrow r d r d \theta \\
& \text { Sol } V_{0}=\int_{0}^{2 \pi} \int_{0}^{1} r \cdot r d r d \theta=\left.\int_{0}^{2 \pi} \frac{r^{3}}{3}\right|_{0} ^{1} d \theta=\frac{1}{3} \cdot 2 \pi=2 \pi / 3
\end{aligned}
$$

Name and SID:
2. (14 points) Let R be the parallelogram with vertices $(0,0),(1,1),(2,-1)$, and $(3,0)$. Use the change of variables

$$
x=u+2 v, \quad y=u-v
$$

to evaluate the integral

$$
\iint_{R}(x+2 y)^{2} e^{x-y} d A
$$

the 4 lime defining the baudory become:

$$
\begin{aligned}
& x-y=0 \longrightarrow v+2 v-(v-v)=3 v=0 \Longrightarrow v=0 \\
& x-y=1 \longrightarrow v+2 v-(v-v)=3 \Longrightarrow v=1 \\
& y+\frac{x}{2}=0 \Longrightarrow v-v+\frac{v+2 v}{2}=0 \Longrightarrow v=0
\end{aligned}
$$

$$
y+\frac{x-3}{2}=0 \Longrightarrow u-v+\frac{v+2 v-3}{2}=0 \Longrightarrow v=1
$$

So the parallelogram R corresponds to the unb-square. The jacobian is

$$
\frac{\partial(x, t)}{\partial\left(y_{1}\right)}=\left|\begin{array}{|c}
1 \\
1
\end{array}\right|
$$

\qquad
3. (12 points) Find the average distance from a point in a ball of radius a (ie., a solid sphere in \mathbb{R}^{3} centered at the origin) to its center. Let $玉=$ sphereofsadusa abongn.

The required average is:

$$
\frac{\iiint_{E} \operatorname{degt}(x, y, z) d V}{\iiint_{E} 1 d V}
$$

$$
\text { where } \operatorname{det}(x, y, z)
$$

$$
=\sqrt{x^{2}+y^{2}+z^{2}}
$$

Since dist and E are spherically sywetic, we switch to Spherical coors:

We now have:

$$
\begin{aligned}
& \iiint_{E} 1 d v=\frac{4}{3} \pi a^{3} \text { (done in class) } \\
& \iiint_{E} \rho d V \\
& =\left.\int_{0}^{2 \pi} \int_{0}^{\pi} \sin \phi \frac{\rho^{4}}{4}\right|_{0} ^{a} d \phi d \theta=\left.\frac{a^{4}}{4} \int_{0}^{2 \pi}(-\cos \phi)\right|_{0} ^{\pi} d \theta \\
& =\frac{2 a^{4}}{4} \int_{0}^{2 \pi} d \theta=\pi a^{4} \text {. So the average dest.s } \\
& \frac{\pi a^{4}}{\frac{4}{3} \pi a^{3}}=\frac{3}{4} a .
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{dest}(x, y, z) \longrightarrow \rho \\
& E \longrightarrow\{0 \leq \leq \rho \leq a, 0 \leq \varphi \leq \pi \text {, } \\
& 0 \leq \theta \leq 2 \pi\} \text {. }
\end{aligned}
$$

4. (8 points) Change the order of integration:

$$
\int_{0}^{1} \int_{0}^{\sqrt{z}} \int_{0}^{\sqrt{y}} f(x, y, z) d x d y d z=\int_{?}^{?} \int_{?}^{?} \int_{?}^{?} f(x, y, z) d y d z d x
$$

The limits moly: $0 \leq z \leq 1,0 \leq y \leq \underbrace{2}_{z=1}, ~ \underbrace{y \geqslant x^{2}}_{y \geq y^{2}}$

$$
\text { rage of } x \text { : } 0 \text { to } 1 \text { (by sting y, }
$$

$$
\text { aageof zquex: } \quad \mid \geqslant z \geqslant y^{2} \geqslant x^{4}
$$

range of y giver

$$
\begin{aligned}
& \text { rave of } y \text { giver }
\end{aligned} x^{2} \leq y \leq \sqrt{z}
$$

So lints:

$$
\int_{0}^{1} \int_{x^{4}}^{1} \int_{x^{2}}^{\sqrt{z}} z(x, y, y, z) d y d z d x
$$

5. (a) (6 points) Let E be the region in \mathbb{R}^{3} bounded by the sphere of radius 3 at the origin, the sphere of radius 4 at the origin, the cone $z=-\sqrt{x^{2}+y^{2}}$, and the cone $z=-2 \sqrt{x^{2}+y^{2}}$. Which of the following integrals represents the volume of E ? (circle exactly one)
X. $\int_{3}^{4} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} \int_{-\sqrt{x^{2}+y^{2}}}^{-2 \sqrt{x^{2}}} d z d y d x$ X-proxection is not
$[3,4]$

Not a volume \% $\int_{3}^{4} \int_{0}^{2 \pi} \int_{3 \pi / 4}^{5 \pi / 6} d \phi d \theta d \rho$
. $\int_{3}^{4} \int_{0}^{2 \pi} \int_{-2 r^{2}}^{-r^{2}} r d z d r d \theta$
projector on $x y$-place is
4. None of the above.
not aunclos $(3,4)$

(b) (8 points) Match the vector field to the picture. There is an exact match.
opposites
ofeach
oturs.

Field	A-D
$\vec{F}(x, y)=\langle 0, y\rangle$	B
$\vec{F}(x, y)=\left\langle-x, y^{3}\right\rangle$	A
$\vec{F}(x, y)=\left\langle y^{3},-x\right\rangle$	\mathbf{D}
$\vec{F}(x, y)=\left\langle x,-y^{3}\right\rangle$	\mathbf{C}

D
distinguish by looking
Math 53 Midterm 2
Page 5 of 10
2/22/2018

Name and SID:
[Scratch Paper 1]

$$
\iint_{R}(x+2 y)^{2} e^{x-y} d x d y
$$

$$
\left(\begin{array}{c}
x=v+2 v \\
y=u-v \\
\text { So } \quad x+2 y=3 u \\
x-y=3 v
\end{array}\right.
$$

$$
=\iint_{S}(3 v)^{2} e^{3 v}|-3| d u d v
$$

$$
=3 \int_{0}^{1} \int_{0}^{1} 9 v^{2} e^{3 v} d v d v=\left.27 \int_{0}^{1} \frac{v^{3}}{3}\right|_{0} ^{1} e^{3 v} d v
$$

$$
=\left.9 \cdot \frac{e^{3 v}}{3}\right|_{0} ^{1}=3\left(e^{3}-l\right)
$$

6. Consider the vector field $\mathbf{F}=\left\langle 4 x \ln (y), \frac{2 x^{2}-1}{y}\right\rangle$ defined on $D=\{(x, y): y>0\}$.
(a) (4 points) Explain why \mathbf{F} is conservative.

$$
\operatorname{corl}(F)=\frac{\partial}{\partial x}\left(\frac{2 x^{2}-1}{y}\right)-\frac{\partial}{\partial y}(4 x \ln (y))
$$

$=\frac{4 x}{y}-\frac{4 x}{y}=0$. Since D is simply corrected, F is consovactive.
(b) (8 points) Using a systematic method, find a potential $f(x, y)$ defined on D such that $\mathbf{F}=\nabla f$.
We wat solve: $f_{x}=4 x \ln (y) \quad f_{y}=\frac{2 x^{2}-1}{y}$
Integrating (1):

$$
\begin{align*}
f(x, y)=\int 4 x \ln (y) d x= & 2 x^{2} \ln (y) \tag{1}\\
& +g(y)
\end{align*}
$$

for sore unkloun $g(y)$.
To ind g, we plug taus into (2):

$$
\frac{\partial}{\partial y}\left(2 x^{2} \ln (y)+g(y)\right)=\frac{2 x^{2}}{y}+g^{\prime}(y)=\frac{2 x^{2}-1}{y} .
$$

Thus $g^{\prime}(y)=\frac{-1}{y} \Rightarrow g(y)=-\ln (y)+C$

$$
\text { So } f(x, y)=2 x^{2} \ln (y)-\ln (y)+C, \text { for } C \text { constach. }
$$

7. (12 points) Calculate the work done by the force field $\mathbf{F}=\left\langle y^{2}+1,2 x y+\sin ^{6}(y)\right\rangle$ on a particle moving in the plane with trajectory $\mathbf{r}(t)=\left\langle e^{t},\left(t^{6}-1\right) \sin (t)\right\rangle, t \in[0,1]$.
The path giver looks complicated, so it wald benece if the integral was indeperdat of path (in uluch case we code replace by a simpler potty).
Let's check thy: $\operatorname{corl}(F)=2 y-2 y=0$, aid F is defined on \mathbb{R}^{2} which is simply connected, so inced the integral is indeperat of path!
The endpoints of the giver path al

$$
F(0)=\langle 1,0\rangle, \quad F(1)=\langle e, 0\rangle .
$$

So instead, let's integrate along $C: F(t)=\langle t, 0\rangle$

$$
\begin{aligned}
\text { which is } & \int_{1}^{e} F(t, 0) \cdot\langle 40\rangle d t \quad F^{\prime} \quad F^{\prime}(t)=\langle 1, e] . \\
= & \int_{1}^{e}\langle 1,0\rangle
\end{aligned}
$$

\qquad
8. Let $\mathbf{F}=\langle 2 x y, 3 x y\rangle$, and let C be a positively oriented unit circle centered at the origin. Use Green's theorem to evaluate:
(a) (7 points) The work $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.

$$
\operatorname{Corl}(F)=\frac{\partial}{\partial x}(3 x y)-\frac{\partial}{\partial y}(2 x y)=3 y-2 x .
$$

$$
\int_{C} \bar{F} \cdot d \bar{\sigma}=\iint_{D}(3 y-2 x) d A \text { where Dis the ont circe }
$$

$$
=3 \iint_{D} y d A-2 \iint_{D} x d A=0-0=0
$$

Since the cater of mass of a coerce with vii density is its center, whachis $(0,0)$.
(b) (7 points) The flux $\int_{C} \mathbf{F} \cdot \mathbf{n} d s$.

$$
\begin{aligned}
& \operatorname{div}(f)=2 y+3 x \\
& \int_{C} F \cdot n \cdot n=\iint_{D} 2 y+3 x d A
\end{aligned}
$$

Caldalso use
symmetry about

$$
x \text {-axis and }
$$ y-axis.

Name and SID:
[Scratch Paper 2]

