
Solutions to Homework 5

14.7

Problem 3. ∇f = 〈3x2 − 3y, 3y2 − 3x〉. If we solve ∇f = 0, we can find two solutions (0, 0) and (1, 1).

• At (0, 0), fxx = 0, fyy = 0, fxy = −3 and D = fxxfyy − f2xy < 0, therefore (0, 0) is saddle point.

• At (1, 1), fxx = 6, fyy = 6, fxy = −d and D = 27 > 0, hence (1, 1) is a local minimum.

Problem 7. ∇f = 〈1−2xy+y2,−1−x2+2xy〉. To solve the equation ∇f = 0, we can add the two equations
to get y2 − x2 = 0, therefore y = ±x. If y = x, then the solution is (1, 1) and (−1,−1). If y = −x, there is
no solution.

• At (1, 1), fxx = −2, fyy = 2, fxy = 0 and D = −4 < 0, hence (1, 1) is saddle point.

• At (−1,−1), fxx = 2, fyy = −2, fxy = 0 and D = −4 < 0, hence (−1,−1) is a saddle point.

Problem 14. ∇f = 〈−y sinx, cosx〉. ∇f = 0 implies that cosx = 0. Therefore sinx = ±1. Since y sinx = 0,
y must be 0. So the critical points are (π2 + kπ, 0) for any integer k.

Since fxx = −y cosx, fyy = 0, fxy = sinx, D at (π2 + kπ, 0) is −1. Therefore, all the critical points are
saddle points.

Problem 15. ∇f = 〈ex cos y,−ex sin y〉. Since ex 6= 0, ∇f = 0 implies that sin y = cos y = 0. However there
is no such y. So there is no critical point.

Problem 31. First step: locate the interior critical point. Since ∇f = 〈2x−2, 2y〉, we have one critical point
(1, 0), and the value at (1, 0) is −1.

Second step: find maximum and minimum on the boundary:

• On the edge from (0,−2) to (0, 2), f = y2, hence the maximum is 4 and the minimum is 0.

• On the edge from (0, 2) to (2, 0), since x+ y = 2 and 0 ≤ x ≤ 2, f = x2 + (2−x)2− 2x = 2x2− 6x+ 4.
f reaches the minimum −1

2 when x = 3
2 and reaches maximum 4 when x = 0.

• On the edge from (0,−2) to (2, 0), by the same argument in the second case(or symmetry), the
maximum is 4 and minimum is −1

2

Putting them together we have the maximum is 4 and minimum is −1.

Problem 34. First step: locate the interior critical point. Since ∇f = 〈2x + y, x + 2y − 6〉, we have one
critical point (−2, 4), and the value at (−2, 4) is −12.

Second step: find maximum and minimum on the boundary:
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• On the edge from (−3, 0) to (3, 0), f = x2, hence the maximum is 9 and the minimum is 0.

• On the edge from (−3, 5) to (3, 5), f = x2 + 5x − 5. f reaches the minimum −45
4 when x = −5

2 and
reaches maximum 19 when x = 3.

• On the edge from (−3, 0) to (−3, 5), f = y2 − 9y + 9. f reaches the minimum −45
4 when y = 9

2 and
reaches maximum 9 when y = 0.

• On the edge from (3, 0) to (3, 5), f = y2 − 3y+ 9. f reaches the minimum 27
4 when y = 3

2 and reaches
maximum 9 when y = 19.

Putting them together we have the maximum is 19 and minimum is −12.

Problem 41. It is easier to find the smallest squared distance. d2 = (x− 2)2 + y2 + (z+ 3)2 for x+ y+ z = 1.
Since z = 1− x− y, d2 = (x− 2)2 + y2 + (4− x− y)2. The critical point of d2 can be found by solving{

2(x− 2)− 2(4− x− y) = 0
2y − 2(4− x− y) = 0

The solution is (83 ,
2
3). Since for x, y big, f is very big. Hence the critical point (83 ,

2
3) must correspond to

the global minimum. Hence the minimum distance is
√

4
3 .

Problem 44. Let the three numbers be x, y, z, then we want to maximize f = xyz for x + y + z = 100 and
x > 0, y > 0, z > 0. Substitute z = 100−x−y, we have f = xy(100−x−y) for x > 0, y > 0 and x+y < 100.

The critical point of f is (1003 ,
100
3 ), which is inside the domain, and f(1003 ,

100
3 ) = 1000000

27 . When f
restricted to the boundary of the domain, the value is 0. So the maximum is 1000000

27 .

Problem 51. Assume the dimensions of the box are x, y, z. We need to maximize xyz given 4(x+ y+ z) = c.

This is exactly the situation in the previous question(if c = 400). Therefore the maximum c3

123
is achieved

when x = y = z = c
12 .

Problem 52. Assume the dimensions of the aquarium is x, y, z. Assume glass costs 1 per unit. Then we need
to minimize 2yz + 2xz + 5xy given xyz = V . Since z = V

xy , f = 2V
x + 2V

y + 5xy for x, y > 0.

Since ∇f = 〈−2V
x2

+ 5y,−2V
y2

+ 5x〉, there is only one critical point ( 3

√
2V
5 ,

3

√
2V
5 ). Note that if x → 0,

then yz →∞, if y → 0, then xz →∞ and if z → 0, then xy →∞. That is f diverges to ∞ when any one
of x, y, z approaches 0. Therefore the unique critical point must correspond to the global minimum. So the

optimal dimensions are 3

√
2V
5 ,

3

√
2V
5 ,

3

√
25V
4

14.8

Problem 1. At any solution to the Larangian multiplier, we must have ∇f is perpendiculer to the constriant
g(x, y) = 8. In other words, the level curves of f is tangent to g(x, y) = 8. From the picture we find four
points satifying such condition. The maximum value among is 60 and the minimum value is 30.

Problem 3. By Lagrange multipliers we have
2x = λ2x
−2y = λ2y

x2 + y2 = 1
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If x 6= 0, then from the first equation λ = 1, hence −2y = 2y, i.e. y = 0. Therefore we have two solutions
(1, 0) and (−1, 0). If x = 0, then y 6= 0 by the third equation, hence λ = −1 and y = ±1, we have the other
two solutions (0,−1), (0, 1). Plugging them in, we have the maximum is 1 and the minimum is −1.

Problem 11. By Lagrange multipliers we have
2x = λ4x3

2y = λ4y3

2z = λ4z3

x4 + y4 + z4 = 1

If x, y, z are nonzero, the first three equastions imply that x2 = y2 = z2 = 1
2λ . Combining with the third

equation, we have eight solutions (± 4

√
1
3 ,±

4

√
1
3 ,±

4

√
1
3).

If only one of x, y, z is zero, assume it is x, then by the second and third equation, we have y2 = z2. So

there are four solutions (0,± 4

√
1
2 ,±

4

√
1
2). If y = 0, we have another four (± 4

√
1
2 , 0,±

4

√
1
2) and if z = 0, we

have (± 4

√
1
2 ,±

4

√
1
2 , 0)

If two of z, y, z are zero, then the solutions are (±1, 0, 0), (0,±1, 0) and (0, 0,±1)
Plugging those points into the function, we have the maximum is

√
3 and minimum is 1.

Problem 16. By Lagrange multipliers we have
2x = λ
4y = 2λ
6z = 3λ

x+ 2y + 3z = 10

The first three euqations imply that x = y = z. Hence the solution is (103 ,
10
3 ,

10
3 ). If any one of x, y, z is

very big, f is also very big. Therefore f has no maximum, and the solution from the Lagrange multipliers
corresponds to the global minimum 200

3 .

Problem 23. First step: find the interior critical points. Since ∇f = 〈−ye−xy,−xe−xy〉, the only critical
point is (0, 0), which is inside the domain. f(0, 0) = 1.

Second step: find the maximum and minimum on the boundary. The boundary is x2 + 4y2 = 1 and we
will use Lagrange multipliers: 

−ye−xy = 2λx
−xe−xy = 8λy
x2 + 4y2 = 1

If we multple x to the first equation and y to the second equation, we have −xye−xy = 2λx2 = 8λy2. If

λ 6= 0, then we know x2 = 4y2. Hence the solutions are (±
√

1
2 ,±

1
2

√
1
2). If the λ = 0, then the first two

equations imply that x = y = 0, contradicting the last equation. Evaluating the function on those four
points, we have the maximum on the boundry is e

1
4 and the minimum is e−

1
4

Putting them together, the global maximum is e
1
4 and the global minimum is e−

1
4 .

Problem 29. Assume the dimensions of the rectangle are x, y. We need to maximize A = xy subject to
constraints 2x + 2y = p, x ≥ 0 and y ≥ 0. Geometrically, the constraints give a line segement. To find the
maximum, we need to use Lagrange multipliers to locate critical points in the interior of the line segement
and evaluating the function there, we also need to compare them with the boundary value.
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Step one: Lagrange multipliers for the interior critical points:
y = 2λ
x = 2λ

2x+ 2y = p

Hence the critical point is (p4 ,
p
4), where A = p2

16 .
Step two: Find the maximum and minimum on the boundary. Since the boundary is two points (0, p2)

and (p2 , 0), the boundary maximum and minimum are both 0.

Therefore the global maximunm is p2

16 , and it is reached when x = y = p
2 .

Problem 30. It is easier to maximize A2 = s(s − x)(s − y)(s − z) subject to constraints x + y + z = p,
x ≥ 0, y ≥ 0, z ≥ 0, x+ y ≥ z, y + z ≥ x and x+ z ≥ y. The last three inequalities are necessary conditions
for x, y, z to form a triangle. The domain for x, y, z is actually a triangle in space, where the edges of triangle
come from the inequalities.

Step one: Lagrange multipliers for the interior critical points. Note that s = p
2 is a constant.

−s(s− y)(s− z) = λ
−s(s− x)(s− z) = λ
−s(s− x)(s− y) = λ

x+ y + z = p

Multiply (s− x) to the first equation, multiply (s− y) to the second and (s− z) to the third. If λ 6= 0, we

have s−x = s−y = s−z = − s(s−x)(s−y)(s−z)
λ . Since x+y+z = 2s = p, we must have x = y = z = p

3 . In this

case, the area is
√
3p2

36 . If λ = 0, from the first three equations, we must have two of (s− x), (s− y), (s− z)
are zero, no matter what are the solutions, the area must be zero by Heron’s formula.

Step two: the boundary maximum. Since the boundary points are thoses points (x, y, z) on the plane
x + y + z = p such that one of the six inequalities becomes equality. Once we have a equality, the triangle
collapses to a line segement, hence the area must be zero.

Therefore the global maximum comes from the interior critical point (p3 ,
p
3 ,

p
3).

Problem 31. We will maximize the distance square d2 = (x − 2)2 + y2 + (z + 3)2 By Lagrange multipliers
we have 

2(x− 2) = λ
2y = λ

2(z + 3) = λ
x+ y + z = 1

From the first three equations, we know that (x − 2) = y = (z + 3). Hence the only solution is (83 ,
2
3 ,−

7
3),

where the distance is
√

4
3 . When any one of x, y, z is big, the distance is also big. Therefore, the only critical

point we find above corresponds to the global minimum.

Problem 37. Since we can rotate the sphere as well as the box inside it, it is safe to assume all the edges of
the box are parallel to the axes. Assume the coordinate of the vertex in the octant is (x, y, z), we need to
maximze V = 8xyz subject to x2 + y2 + z2 = r2, x ≥ 0, y ≥ 0 and z ≥ 0.

Step one: Use Lagrange multipliers to locate interior critical points.
8yz = 2λx
8xz = 2λy
8xy = 2λz

x2 + y2 + z2 = r2
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Multiply the first eqaution by x, the second by y and the third by z. We have 2λx2 = 2λy2 = 2λz2 = 8xyz.

If λ 6= 0, we must have x2 = y2 = z2. Since we also have x, y, z ≥ 0, the only solution is (r
√

1
3 , r
√

1
3 , r
√

1
3),

where V = 8r3
√

1
27 . If λ = 0, then the first three equations imply that two of x, y, z are zero, and the

volume is 0 since the box collapses.
Step two: the boundary maximum. Since the boundary of the contraints come from x = 0 or y = 0 or

z = 0. In any case, the box collapses hence the volume is 0.

Therefore the maximum is 8r3
√

1
27 .

One can avoid the discussion of the boundary by considering maximizing V 2 = 64x2y2z2 for any point
x, y, z on the sphere x2 + y2 + z2 = r2. The reason of using V 2 instead of V is that V = 8|xyz| is not
differentiable unless we restrict the function to the first octant like what we did in the solution.
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