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Section 14.1:
14. We are asked to find and sketch the domain of the function

4
√

x−3y

This function is defined whenever x−3y≥ 0
This is equivalent to the condition

~v·< 1,−3 >≥ 0

which describes the half-plane of vectors in R2 forming an angle less than or equal to
π/2 with the vector

< 1,−3 >

(see attached drawing)

30. (see attached drawing)

32. a) III

f (x,y) =
1

1+ x2 + y2

It is clear that f ≤ 1 everywhere, attains this maximum only at the origin where
x2+y2 = 0, and since x2+y2 is the square of the distance from the origin, f is constant
on circles centered at the origin. only III satisfies these conditions.

b) I

f (x,y) =
1

1+ x2y2

Again, f ≤ 1 everywhere and equals one only where x2y2 = 0, which occurs along the
x and y axes and nowhere else. Therefore f attains its maximum everywhere along the
x and y axes and nowhere else. Only I and II satisfy this condition. If we look only at
points where y = x, the equation for f simplifies to

1
1+ x4
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which strictly decreases as we increase |x|. This means if we move away from the ori-
gin along the line y = x, the graph should never begin to increase, which rules out II,
where we see slight increasing occurring at the edge of the region shown.

c) IV
f (x,y) = ln(x2 + y2)

this is the only function in the collection that becomes unbounded near (0,0). IV is
similarly the only graph that diverges near the origin.

d) V
f (x,y) = cos(

√
x2 + y2)

This function is constant along circles centered at the origin and oscillates as we move
away from the origin. Only V satisfies this condition.

e) VI
f (x,y) = |xy|

This function is zero only along the x and y axes and greater than zero everywhere else.
Only VI satisfies this.

f) II
f (x,y) = cos(xy)

On the one hand of course II is the only choice left, but its also clear that II is correct
because f = 1 where xy = 0 and, similarly to b), if we look where y = x, the equation
reduces to

cos(x2)

and so we expect to see oscillation as we move away from the origin along the line
y = x, and we can see this occurring in II.

36. The first image, where the rings occur closer and closer together as we move
from the origin, corresponds to the paraboloid. One way of seeing this is to take, for
instance, the paraboloid

f (x,y) = x2 + y2

and consider the set of points in the plane where f (x,y) = c for some fixed choice of
c > 0. This set is the same as the set of points satisfying√

x2 + y2 =
√

c

i.e. a circle of radius
√

c.
Now if we look at a collection of such sets, say first the set where f (x,y) = 1, then the
set where f (x,y) = 2, then f (x,y) = 3 and so on, we will see concentric circles first
of radius 1, then radius

√
2, then

√
3 and so on. The square root function

√
x grows

more and more slowly as x > 0 increases. This corresponds to the characteristic that
the circles appear closer and closer together as we move farther from the origin.

2



38. see attached drawing

46. see attached drawing

54. see attached drawing

61. C, II
z = sin(xy)

this function is constant where xy is constant, i.e. where

xy = c

or
y = c/x

only C and II exhibit this behavior.

62. A, IV
z = excos(y)

If we only vary x, z behaves like the exponential function, in particular it will increase
without bound for very positive x and tend to zero for very negative x, and if we only
vary y, z oscillates. Only A exhibits this behavior.
When y = (2n+1)π/2, cos(y) = 0 and so z = 0. Therefore no contour line can cross
the lines y = (2n+1)π/2, which are an infinite collection of evenly space lines parallel
to the x axis. Only image IV could satisfy this condition.

63. F, I
z = sin(x− y)

z is constant along lines y = x+ c. Only F and I allow for this.

64. E, III
z = sin(x)− sin(y)

z oscillates when we vary only x and when we vary only y. Only E exhibits this be-
havior. Looking at E, there are evenly spaced local maxima and minima, little hills and
valleys, and each hill for instance will correspond to a collection of concentric loops in
the contour map like we see only in III.

65. B, VI
z = (1− x2)(1− y2)

z=1 at the origin and z=0 anywhere on the square determined by the equations y = 1,
y = −1, x = 1 nd x = −1. This is enough to see that only B and VI could be correct
choices.
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66. D, V
z =

x− y
1+ x2 + y2

for large values of x and y the denominator in the expression above dominates the nu-
merator and z will be very small. Furthermore z is negative when x=0 and positive
when y=0. This is enough to see that only D could be the graph of z. Then we can
see that V has two obvious families of concentric closed loops that correspond to the
maximum and minimum points visible in graph D.

71. a) The whole graph of f is lifted 2 units to obtain the graph of g.

b) The distance of the graph of f from the x-y plane is doubled at each point, resulting
in the stretching of f by a factor of 2, to obtain the graph of g.

c) The graph of f is flipped upside down to obtain the graph of g.

d) The graph of f is flipped upside down and lifted 2 units to obtain the graph of g.

72. a) The graph of f is shifted 2 units in the positive x direction to obtain the graph of g.

b) The graph of f is shifted 2 units in the negative y direction to obtain the graph
of g.

c) The graph of f is shifted 3 units in the negative x direction and 4 units in the positive
y direction to obtain the graph of g.

Section 14.2:
7. sin is defined on the range of (x−y), so sin(x−y) is continuous. ysin(x−y) is thus a
product of continuous functions and is therefore continuous. The limit at (π,π/2) can
therefore be evaluated directly and is π

2 sin(π/2) = π

2 .

9. If we look at the function

f (x,y) =
x4−4y2

x2 +2y2

along the y axis (where x = 0), then f (x,y) = −2 everywhere. Along the x axis how-
ever, f (x,y) = x2, which approaches zero near the origin. This shows that the limit
does not exist.
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13.

0≤ | xy√
x2 + y2

|

≤ | x2 + y2

2
√

x2 + y2
|

≤ 1
2

√
x2 + y2

the function in the last line clearly approaches zero near the origin and gives an upper
bound for the magnitude of

f (x,y) =
xy√

x2 + y2

which shows that f also approaches zero near the origin.

28.
f (x,y) =

1
1− x2− y2

f is discontinuous where the denominator above vanishes. If we re-express f as

f (x,y) =
1

1− (
√

x2 + y2)2

then, since
√

x2 + y2 measures distance from the origin, it is clear that the denominator
vanishes only on the circle of radius 1 centered at the origin

{(x.y) ∈ R2| x2 + y2 = 1)}

Furthermore, if
√

x2 + y2 < 1, the denominator is positive and if
√

x2 + y2 > 1, it is
negative, so as we approach the set above from outside, f approaches −∞ but as we
approach the circle from the inside, f approaches +∞.

33.
G(x,y) =

√
x+

√
1− x2− y2

This function is only defined on the intersection of the unit disk x2 + y2 ≤ 1 with the
half plane x≥ 0

{(x,y) ∈ R2| x2 + y2 ≤ 1, x≥ 0}
On this set, both the continuous function x and the continuous function 1−x2−y2 take
values in the nonnegative numbers, where

√
· is defined and continuous. Therefore the

function is continuous where it is defined.

45.

|x−a|2 = (x−a) · (x−a)

= |x|2 + |a|2−2(x ·a)
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so
2(x ·a) = |x|2 + |a|2−|x−a|2

which implies, along with the Cauchy-Schwartz inequality,

(|x|− |a|)2 = |x|2 + |a|2−2|x||a|
≤ |x|2 + |a|2−2(x ·a)
= |x−a|2

which shows continuity by definition 5 in 14.2.

46. let c =< c1, ...,cn > and x =< x1, ...,xn >. Then

c · x = c1x1 + ...+ cnxn

which is a linear combination of linear functions and is therefore continuous.

Section 14.3:

8. The slope in the x direction is positive at (1,2) and grows steeper as y increases, so
the sign of fxy is positive at this point.

18.
f (x,y) =

√
3x+4t

fx(x,y) =
3

2
√

3x+4t

fy(x,y) =
2√

4x+4t

19.
z = ln(x+ t2)

zx =
1

x+ t2

zt =
2t

x+ t2

41.
R(s, t) = tes/t

Rt(s, t) = es/t − s
t

es/t

Rt(0,1) = 1

50.
yz+ xln(y) = z2
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firstly, for ∂ z
∂x

y
∂ z
∂x

+ ln(y) = 2z
∂ z
∂x

so
∂ z
∂x

=
−ln(y)
y−2z

Then for ∂ z
∂y

z+ y
∂ z
∂y

+
x
y
= 2z

∂ z
∂y

so
∂ z
∂y

=
−zy− x
y(y−2z)

56.
T = e−2rcos(θ)

Tr =−2e−2rcos(θ)

Tθ =−e−2rsin(θ)

Trθ = Tθr = 2e−2rsin(θ)

Trr = 4e−2rcos(θ)

Tθθ =−e−2rcos(θ)

71.
f (x,y,z) = xy2z3 +arcsin(x

√
z)

fy = 2xyz3

fyx = 2yz3

fyxz = 6yz2 = fxzy

74. a) Negative. The function decreases as we increase x at p.

d) Negative. As y increases at p, we move to a region where the contour lines are
more closely spaced, which corresponds to more rapid change. Since in the x direction
the lines decrease in value, this means we would observe a more rapid descent, which
corresponds to a negative value of fxy.

101. Clairaut’s Theorem says
fxy = fyx

which immediately gives
fxyy = fyxy
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but then using Clairaut’s theorem on the function fy, we get

fyxy = fyyx

which completes what we are asked to prove.

Section 14.4:

3.
z = ex−y, (2,2,1)

vx(2,2,1) =< 1,0,e2−2 >=< 1,0,1 >

vy(2,2,1) =< 0,1,−e2−2 >=< 0,1,−1 >

vx× vy =<−1,1,1 >

so the plane takes the form
−x+ y+ z−d = 0

plugging in (x,y,z) = (2,2,1) to solve for d, we get the equation

−x+ y+ z−1 = 0

13. f (x,y) = x2ey is the product of differentiable functions and is therefore differen-
tiable.

fx = 2xey

fy = x2ey

The linearization at (1,0) is

L(x,y) = f (1,0)+ fx(x−1)+ fy(y) = 1+2(x−1)+ y

19. Using the information provided, the linearization is

L(x,y) = 6+(x−2)− (y−5)

then we can approximate f (2.2,4.9) by

L(2.2,4.9) = 6.3

31.
z = 5x2 + y2

∂ z
∂x

= 10x

∂ z
∂y

= 2y
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dz = 10xdx+2ydy

now we can compute

∆z = 5(1.05)2 +2.12− (5+4) = 5.5125+4.41−9 = 0.9225

dz = 10(0.05)+4(0.1) = 0.9

then
∆z−dz = 0.0225

42. r1(0) = 2,1,3 and r2(1) = (2,1,3). Therefore the vectors r′1(0) and r′2(1) are
parallel to the plane.

r′1(0) =< 3,0,−4 >

r′2(1) =< 2,6,2 >

Therefore
r′1(0)× r′2(1) =< 24,−14,18 >

is normal to the plane in question. We can scale this vector to < 12,−7,9 > and it
will of course still be normal to the desired plane. Therefore, plugging in the point
p = (2,1,3), we see that the plane is described by

12x−7y+9z−44 = 0

or
y = 1

46. a) Problem 45 shows that if f is differentiable at a point, then its limit exists at that
point. However, if we look at the f along the line y = x,

f = 1/2

but along the line y = 0 for instance,

f = 0

this shows that the function cannot have a well defined limit at the origin, where these
two lines intersect. Thus f is not differentiable. However, for any choice of y

f (0,y) = 0

and for any choice of x
f (x,0) = 0

These statements respectively imply

fy(0,0) = 0
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and
fx(0,0) = 0

b) If we evaluate f where y = x, we get

f (x,y) =
x2

2x2 = 1/2

but if we evaluate f where y = 0 for instance, we get

f (x,y) = 0

since the two lines y = x and y = 0 intersect at the origin, this shows that f cannot be
continuous at the origin.
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