Name:
Nishil Srivastava

SID: \qquad

GSI: \qquad

Name of the student to your left:
NAME OF THE STUDENT TO YOUR RIGHT:
Instructions: Write all answers clearly in the provided space. This exam includes some space for scratch work at the bottom of pages 2 and 6 which will not be graded. Do not under any circumstances unstaple the exam. Write your name and SID on every page. Show your work - numerical answers without justification will be considered suspicious and will not be given full credit. You are allowed to bring one single-sided handwritten letter size cheat sheet. Calculators, phones, textbooks, and your own scratch paper are not allowed. If you are seen writing after time is up, you will lose 20 points.

When you are done, hand over your exam to your GSI unless your GSI is Shiyu Li, in which case hand it over to me.

UC Berkeley Honor Code: As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others.

Sign here:

Question:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Total
Points:	12	6	6	8	6	6	6	6	6	6	6	6	6	7	7	100

Do not turn over this page until your instructor tells you to do so.
\qquad

1. (12 points) Circle always true (T) or sometimes false (F) for each of the following. There is no need to provide an explanation. Two points each.
(a) Suppose $f(x, y)$ is differentiable and $f_{x}=1$ and $f_{y}=-2$ at a point. Then there is a direction u such that $D_{u} f=0$ at that point.

$$
\begin{equation*}
\text { choose }=\langle a, b\rangle \text { so } a(1)+b(-2)=0 \tag{T}
\end{equation*}
$$

(b) If the level curve of a differentiable function $g(x, y)=k$ intersects itself nontangentially at a point P, then P must be a critical point of g.

$$
\text { Sine Vg is } \perp \text { to the level cove of } g \text {. }
$$

(c) If a and b are vectors in \mathbb{R}^{3} then $a \times(a \times b)$ is always zero.
(d) The flux of $F=\langle x, 0,0\rangle$ across a sphere of radius 1 at the origin is strictly less than its flux across a sphere of radius 2 at the origin, where both are outwardly oriented.

$$
\text { Because JiNx }=\iiint_{E} d v(F) d V=2 V_{0} \mid(E)
$$

(e) If $\operatorname{curl}(\nabla f)=\nabla f$ for a function f defined on \mathbb{R}^{3}, then f must be a solution of the PD

$$
\partial^{2} f / \partial x^{2}+\partial^{2} f / \partial y^{2}+\partial^{2} f / \partial z^{2}=0 .
$$

Take div of both sides:
(T) F
(f) If $S=\{(x, y, z): f(x, y, z)=k\}$ is a level surface of a smooth function f with no critical points on S, then S must be orientable.
(1) F
[Scratch Space Below]

$$
\bar{n}=\frac{\nabla f}{\|\nabla f\|}
$$

, ulichis a conhewoors normal vector $\sin c e$ $\nabla 5 \perp \delta$.
\qquad
2. Determine whether each of the following statements is true. If so, explain why, and if not, provide a counterexample.
(a) (3 points) If \mathbf{F} and \mathbf{G} are conservative vector fields defined on \mathbb{R}^{3} then the sum $\mathbf{F}+\mathbf{G}$ is also conservative.

True. There are many ways to see til:
(1) F and φ are consovative, so $\oint_{C} \bar{F} d \bar{r}=0$ aid $\oint_{C} \bar{G} \cdot d \bar{r}=0$ for every closed C. Adding these, $\oint_{C}(\bar{F}+\bar{\xi}) \cdot d=0$ for all such C, so $\bar{F}+\bar{a}$ is consorative.
(2) By linearly of $\operatorname{corl}(\bar{F}+\bar{G})=\underset{\text { porter }}{ }=\operatorname{cor}(\bar{F})+\operatorname{corl}(\bar{G})=$ $0+0=0$
(b) (3 points) If $\mathbf{F}=\langle P, Q, R\rangle$ and $\mathbf{G}=\langle S, T, U\rangle$ are conservative vector fields defined on \mathbb{R}^{3}, then the vector field

$$
\mathbf{H}=\langle P S, Q T, R U\rangle
$$

with components equal to their entrywise products, is also conservative.
False. You skald be suspicuous since eetrywise products of vectors rarely had mice propoties in tues coss.
$\bar{F}=\langle y, x, 0\rangle$ has $\omega r \mid=\langle 1-1,0,0\rangle=0$
So its conservative -
However $\left\langle y^{2}, x^{2}, 0\right\rangle$ has wrl $=\{2 x-2 y, 0,0\rangle$ which is not zeros
3. (6 points) A particle moves along the intersection of the surfaces:

$$
\begin{aligned}
& z=x^{2}+\frac{y^{2}}{4} \quad \Longrightarrow f(x, y, z)=0 \\
& x^{2}+y^{2}=25 .
\end{aligned}
$$

and

Suppose its position vector at time t is $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ and we know that $x(0)=$ $3, y(0)=4$, and $x^{\prime}(0)=4$. Calculate $y^{\prime}(0)$ and $z^{\prime}(0)$.
The velocity vector $F^{\prime}(0)=\left\langle x^{\prime}(0), y^{\prime}(0), z^{\prime}(0)\right\rangle$ lies in both the 1 places to $x^{2}+\frac{y^{2}}{4}-z=0$ curd
$x^{2}+y^{2}-25=0$. The normals to these planes at given by

$$
\begin{aligned}
& \nabla f=\left\langle 2 x, \frac{2 y}{4},-1\right\rangle=\langle 6,2,-1\rangle \text { at } F(0), \\
& \nabla g=\langle 2 x, 2 y, 0\rangle=\langle 6,8,0\rangle \text { at } \bar{r}(0) .
\end{aligned}
$$

Sine $F^{\prime}(0)$ must be perpuidicar to both of these, it must he parallel to the o coss product: $\left|\begin{array}{lll}i & j k \\ 6 & \lambda^{2} & -1 \\ 6 & 8 & 0\end{array}\right|=\langle 8,-6,36\rangle=c\left\langle\begin{array}{l}K^{2}(0), \text { giver } \\ \left.4, y^{\prime}(0), z^{\prime}(0)\right\rangle\end{array}\right.$

Thus we have $C=1 / 2$ and

$$
\begin{aligned}
& y^{\prime}(0)=-3 \\
& z^{\prime}(0)=18
\end{aligned}
$$

4. Suppose $f(x, y)=x y$ and $x=r \cos \theta, y=r \sin \theta$.
(a) (4 points) Use the chain rule to find the partial derivatives $\partial f / \partial r$ and $\partial f / \partial \theta$.

$$
\begin{aligned}
\frac{\partial f}{\partial r} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial r} \\
& =y \cos \theta+x \sin \theta \\
\frac{\partial f}{\partial \theta} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta}=-y r \sin \theta+x r \cos \theta
\end{aligned}
$$

(b) (4 points) Use this to approximate the value of f at the point $(r, \theta)=(1.001,-0.01)$.

Letting $r_{0}=l, \theta_{0}=0$, and $f(r, \theta):=f\left(r \cos _{8} \theta\right.$, $r \sin \theta)$,

$$
\begin{aligned}
& f\left(r_{0}+\Delta r, \theta_{0}+\Delta \theta\right) \quad \text { we have } \\
& \approx f\left(r_{0}, \theta_{0}\right)+\frac{\partial f}{\partial r} \Delta r+\frac{\partial f}{\partial \theta} \Delta \theta \\
& (r, \theta)=
\end{aligned}
$$

At the pout $r_{r} \theta\left(=(1,0)\right.$ the dervatues are $f_{r}=y \cos \theta+x \sin \theta$

Name and SID: \qquad
5. (6 points) Suppose $z=z(x, y)$ is a differentiable function satisfying $e^{z}=x y z$. Find $\partial z / \partial x$ and $\partial^{2} z / \partial x^{2}$ as functions of x, y, z.
Treating y as a constant aid impluetly defferectiong $\ln x$:

$$
\begin{aligned}
\frac{\partial}{\partial x} e^{z}=e^{z} z_{x} & =\frac{\partial}{\partial x}(x y z) \\
& =y z+y x z x
\end{aligned}
$$

$$
\text { Rearaigng: } z_{x}=\frac{y z}{e^{z-y x}}
$$

D. Secelathg the above again in x:

$$
\Rightarrow e^{z}\left(z_{x}\right)^{2}+e^{z^{z}} z_{x x}=y z_{x}+\left(y x z_{x x}+y z_{x}\right)
$$

[Scratch Space Below]

$$
\begin{aligned}
\Longrightarrow z_{x x} & =\frac{2 y z_{x}-e^{z}\left(z_{x}\right)^{2}}{e^{z}-y x} \\
& =\frac{2 y\left(y z / e^{z}-y x\right)-e^{z}\left(\frac{y z}{e^{z-y x}}\right)^{2}}{e^{z}-y x}
\end{aligned}
$$

6. (6 points) Consider the function $f(x, y)=x^{3} / 3+y^{3} / 3+5 x-y$. Find and classify the critical points of the function $g(x, y)=|\nabla f(x, y)|^{2}$.

$$
\begin{aligned}
& \nabla f=\left\langle 3 x^{2} / 3+5,3 y^{2} / 3-1\right\rangle=\left\langle x^{2}+5, y^{2}-1\right\rangle \\
& \text { So } g(x, y)=x^{4}, 10 x^{2}+25+y^{4}-2 y^{2} \quad \text { and } \\
& \nabla g=\left\langle 4 x^{3}+20 x, 4 y^{3}-4 y\right\rangle \\
& \text { So the cortical pts are selutial \& } 4 x^{3}+20 x=0 \\
& \Rightarrow x\left(x^{2}+5 x\right)=0 \\
& \\
& \qquad \begin{aligned}
4 y^{3}-4 y=0 & \Rightarrow y\left(y^{2}=1\right)=0 \\
& \Rightarrow y=0,+1,-1
\end{aligned}
\end{aligned}
$$

So twee ar twee orticed pts.

$$
\text { Using } f_{x x}=12 x^{2}+20 \text {, } f_{y y}=12 y^{2}-4, f_{x y}=0 \text {, we here. }
$$

$(0,0)$
$(0,-1)$
$(0,1)$
(20) $(-4)<0$
$(20)(8)>0$ (20)(8)>0

Type
local minumin
local muмum
7. (6 points) Find the extreme values of $f(x, y)=e^{-x y}$ in the region $D=\left\{(x, y): x^{2}+\right.$ $\left.4 y^{2} \leq 1\right\}$.

The extreme values ae esther at critical pts or on the bowdioy s D.
Since $\nabla f=\left\langle-y e^{-x y}\right.$, $\left.-x e^{-x y}\right\rangle$, the orly critical pt is $x=y=0$ where we have $f(0,0)=e^{0}=1 / /$.
To find the optima on the banday, we vie Lagrage multiples to
solve $\left[\right.$ maspun $f(x, y)$ siljuelt to $\begin{array}{r}g(x, y)=x^{2}+4 y^{2} \\ =1] \text { : }\end{array}$

$$
\left\{\begin{array}{c}
\left\langle-y e^{-x y},-x e^{-x y}\right\rangle=c \nabla g=c\langle 2 x, 8 y\rangle- \tag{1}\\
x^{2}+4 y^{2}=1
\end{array}\right.
$$

$\begin{aligned} 0 & -\frac{y e^{-x y}}{2 x}=\frac{-x e^{-x y}}{8 y}\end{aligned} \Longrightarrow \frac{-y}{2 x}=\frac{-x}{8 y}$ since $e^{-x y} \neq 0$
Checking the values at turn pts:

$$
\begin{aligned}
& (1 / \sqrt{2}, 1 / 58) \\
& (1 / \sqrt{2},-1 / \sqrt{8}) \\
& \left(-1 / r_{2}, 1 / \sqrt{8}\right) \\
& (-1 / \sqrt{2},-1 / \sqrt{3}) \\
& \text { Math } 55 \text { Final }
\end{aligned}
$$

$-\frac{1}{\sqrt{2}}$

$$
\begin{equation*}
\Rightarrow y= \pm \frac{1}{\sqrt{8}} \tag{-xy}
\end{equation*}
$$

$e^{1 / 4}$
So the manure are $\pm\left(1 / \sqrt{2}, \frac{1}{\sqrt{8}}\right)$ with $f=e^{-1 / 4}$
maxima are $\pm(1 / \sqrt{2},-1 / \sqrt{8})$

$$
f=e^{1 / 4}
$$

Name and SID:
8. (6 points) Compute the area of the simply connected "moustache" region enclosed by the parameterized curve

$$
\mathbf{r}(t)=\langle 5 \cos (t), \sin (t)+\cos (4 t)\rangle, \quad t \in[0,2 \pi] .
$$

Let C be the giver worse and let D bells wheror, whose area we wort to couple.
By Grains Ruoary: $\quad \oint_{C} P d x+Q_{d y}=\iint_{D}\left(\theta_{x}-P_{y}\right) d A$.
Taking $Q=x$ and $P=0$, we have

$$
\text { Area }(D)=\iint_{D} 1 d A=\oint_{C} x d y=\int_{0}^{2 \pi} x(r(t)) y^{\prime}(t) d t
$$

$$
=\int_{0}^{2 \pi} 5 \cos (t)(\cos (t)-4 \sin (4 t)) d t
$$

$$
=5 \int_{0}^{2 \pi} \underbrace{2 c^{2} t d t}-20 \int_{0}^{2 \pi} \cos (t) \sin (4 t) d t=5 \pi .
$$

Math 53 Final $=\frac{\cos (2 \theta)+1}{2}$

0 by sntegrativaiby pots
9. (6 points) Evaluate the integral

$$
\iint_{R} e^{x+y} d A
$$

where R is given by the inequality $|x|+|y| \leq 1$ by making an appropriate change of variables. (hint: sketch the region first)

The nahosal change of varables replaces $x+y$ by a single variable:

$$
\begin{aligned}
& v=x+y \\
& v=x-y
\end{aligned} \Rightarrow \begin{aligned}
& x=v+v / 2 \\
& y=v-v / 2
\end{aligned}
$$

In the uv place, the lines define the boundary of R become:

$$
\begin{array}{ll}
x+y=1 \Rightarrow v=1 & -x-y=1 \Rightarrow v=-1 \\
x-y=1 \Rightarrow v=1 & -x+y=1 \Rightarrow v=-1
\end{array}
$$

fo R is the image of $S=\{-1 \leq v \leq 1,-1 \leq v \leq 1\}$. The Tacobanis

$$
\frac{\partial(x, y)}{\partial(v, v)}=\left|\begin{array}{ll}
x_{v} & x v \\
y_{v} & y_{v}
\end{array}\right|=\left|\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right|=-\frac{1}{2} / /
$$

$$
\begin{aligned}
\text { So we have } \iint_{R} e^{x+y} d A & =\iint_{S} e^{v}|-y / 2| d v d v
\end{aligned}=\frac{1}{2} \iint_{-1}^{1} e^{v} d v d v .
$$

\qquad
10. (6 points) Find the volume of the solid that lies between the paraboloid $z=x^{2}+y^{2}$ and the sphere $x^{2}+y^{2}+z^{2}=2$.

In cylindercal coons, the surf cesar:

$$
\begin{aligned}
& z=2 \\
& r^{2}+z^{2}=2
\end{aligned}
$$

There al two
possible regions her, and either was graded as correct. We will use tue one above the | waladad.
So alan the wren of wherectia we have:

$$
r^{2}+r^{4}=2 \Longrightarrow r^{2}=\frac{-1 \pm \sqrt{1+8}}{2}=\frac{-1 \pm 3}{2} \Rightarrow r^{2}=1
$$

So the shadow of E in the xy-place is ${ }^{-} D=\{r \leq 1\}$
Tues the volume is:

$$
\iint_{D}\left(\sqrt{2-r^{2}}-r^{2}\right) r d r d \theta
$$

$$
\begin{aligned}
& =\int_{0}^{1} \int_{0}^{2 \pi} r \sqrt{2-r^{2}}-r^{3} d \theta d r=2 \pi \underbrace{d=-2 r d r}_{\left.\substack{v=2-r^{2} \\
\int_{0}^{1} r \sqrt{2-r^{2}}} r-\int_{0}^{1} r^{3} d r\right]}
\end{aligned}
$$

Name and SID: \qquad
11. (6 points) Find the work done by the force field $\mathbf{F}=\left\langle z^{2}, x^{2}, y^{2}\right\rangle$ on a particle moving along the line segment from $(1,0,0)$ to $(4,1,2)$.
We pramenotic the fine sequent of:

$$
\begin{aligned}
& C!\quad \bar{r}(t)=(1-t)\langle 1,0,0\rangle+t\langle 4,1,2\rangle \quad t \in[0,1] \\
&=\langle 1+3 t, t, 2 t\rangle, r^{\prime}(t)=\langle 3,1,2\rangle \\
& \text { Hor }=\int_{c}^{1} \bar{F} \cdot d \bar{r}=\int_{0}^{1}\left\langle(2 t)^{2},(1+3 t)^{2}, t^{2}\right\rangle \cdot\langle 3,1,2\rangle d t \\
&=\int_{0}^{1} 12 t^{2}+1+9 t^{2}+6 t+2 t^{2} d t \\
&=\int_{0}^{1} 23 t^{2}+6 t+1 d t=23 \frac{t^{3}}{3}+\frac{6 t^{2}}{2}+\left.t\right|_{0} ^{1} \\
&=\frac{23}{3}+\frac{6}{2}+1=\frac{35}{3}
\end{aligned}
$$

Name and SID:
12. (6 points) A surface S is parameterized by

$$
\mathbf{r}(u, v)=e^{-u^{2}}\langle 1, \sin (v), \cos (v)\rangle
$$

where

$$
0 \leq u \leq \sqrt{\pi}, \quad u^{2} \leq v \leq \pi
$$

Find its surface area.

$$
\begin{aligned}
& \bar{r}_{v}=-2 e^{-v^{2}}\langle 1 \sin (v), \cos (v)\rangle \\
& \bar{r}_{v}=e^{-v^{2}}\langle 0, \cos (v),-\sin (v)\rangle \\
& \text { Jo } \quad \overline{r_{v}} \times \overline{r_{v}}=\left|\begin{array}{ccc}
i & j & k \\
-2 v e^{-v^{2}} & -2 v e^{-v^{2}} \sin (v) & -2 v e^{-v^{2}} \cos (v) \\
0 & e^{-v^{2}} \cos (v) & -e^{-v^{2}} \sin (v)
\end{array}\right| \\
& =\left\langle 2 u e^{-2 u^{2}} \sin ^{2}(v)+2 u e^{-2 u^{2}} \cos ^{2}(v), 2 u e^{-2 v^{2}} \sin (v),-2 u e^{-2 v^{2}} \cos (v)\right\rangle \\
& =\left\langle 2 v e^{-2 v^{2}}, 2 v e^{-2 v^{2}} \sin (v),-2 v e^{-2 v^{2}} \cos (v)\right\rangle \text { so } \\
& \begin{array}{l}
\left|\bar{r}_{v} \gamma \bar{r}_{v}\right|=\left(4 v^{2} e^{-4 v^{2}}+4 v^{2} e^{-4 v^{2}}\left(\cos ^{2}(v)+\sin ^{2}(v)\right)\right)^{y_{2}}=\sqrt{8} v e^{-2 v^{2}} \\
\text { Thus the area is } \int_{i}^{\sqrt{\pi}} \int_{0}^{\pi} \sqrt{(s \pi, \pi)} \sqrt{v^{2}} \underbrace{\pi}_{\text {be cones hard } b} v e^{-2 v^{2}} d v d v=\int_{0}^{\pi} \int_{0}^{\sqrt{v}} \sqrt{8} v e^{-2 v^{2}} d v d v
\end{array}
\end{aligned}
$$

13. (6 points) Find the flux of the vector field

$$
\mathbf{F}(x, y, z)=\left\langle y^{3} z, x^{3} z, 1+e^{x^{2}+y^{2}}\right\rangle
$$

through the paraboloid part S of the boundary of the solid region

$$
E \quad z+x^{2}+y^{2} \leq 1 ; \quad z \geq 0
$$

where S is oriented upwards.
Sintersets the $x y$-place: $\left\{0+x^{2}+y^{2} \leqslant 1\right\}$, whchis the out desk.
let S, be the ont disk oriented downwards,

So that SOS_{1} is the boundary, oneited ahwards, of the soled region E.

$$
\begin{aligned}
& \text { By tue divergeve treosen, } \\
& =0 \text { Sine } \quad d r(F)=\frac{\partial}{\partial x}\left(y^{3} z\right)+\frac{\partial}{\partial y}\left(x^{3} z\right)+\frac{\partial}{\partial z}\left(1+e^{x^{2}+y^{2}}\right)=0 . \\
& \text { Thou, the the of interest is } \iint_{S} F \cdot n d S=-\int_{S_{1}} \bar{F} \cdot \bar{n} d S
\end{aligned}
$$

\qquad
14. (7 points) Let $\mathbf{F}(x, y, z)=\langle y z,-x z, 1\rangle$. Let S be the portion of the paraboloid $z=$ $4-x^{2}-y^{2}$ which lies above the first octant $x \geq 0, y \geq 0, z \geq 0$; let C be the closed curve $C=C_{1}+C_{2}+C_{3}$ where the curves C_{1}, C_{2}, C_{3} are formed by intersecting S with the $x y, y z$, and $x z$ planes respectively, so that C is the boundary of S. Orient C so that it is traversed counterclockwise when seen from above in the first octant.
Use Stokes' theorem to compute the line integral $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ by reducing it to an appropriate surface integral over S.

By Stoves tam,

$$
\oint_{C} \bar{F} \cdot d \bar{r}=\iint_{S} \omega_{1}(\bar{F}) \cdot \tilde{r} d S .
$$

Wehave: $\operatorname{Corl}(\bar{F})=\left|\begin{array}{ccc}i & j & j \\ \partial_{x} & \partial_{y} & \partial z \\ y_{z} & -x z & 1\end{array}\right|=\langle x, y,-2 z\rangle$

$$
\begin{aligned}
& (x, 4) \in \\
& \text { and } \left.\bar{r}(x, y)=\left\langle x, y, 4-x^{2}-y^{2}\right\rangle, D=\left\{x^{2}+y^{2} \leq 4, x, y\right\rangle, 0\right\} \\
& \bar{r}_{x} \times \bar{r}_{y}=\left\langle-z_{x}-z_{y}, 1\right\rangle=\langle 2 x, 2 y, 1\rangle \\
& \text { So } \iint_{\int} \operatorname{cri} l(F) \cdot n d S=\iint_{D}\left\langle x, y_{1}-2\left(4 x^{2}-x^{2}\right)\right\rangle \cdot\langle 2 x, 2 y, 1\rangle d d \\
& =\iint_{D} 2\left(x^{2}+y^{2}\right)-2\left(4-x^{2}-y^{2}\right) d-=4 \int_{0}^{2 \pi / 2} \int_{0}^{2}\left(r^{2}-2\right) r d r d \theta=4 \cdot \frac{\pi}{2} \int_{0}^{2} r^{3}-2 r d r \\
& \text { Page } 15 \text { of } 16=2 \pi\left(\frac{2^{4}}{4}-\frac{2 \cdot 4}{2}\right)=5 / 11 / 2018 \square
\end{aligned}
$$

\qquad
15. (7 points) Let S be the unit sphere centered at the origin, oriented outwards with normal vector \mathbf{n}, and let $f(x, y, z)=x+y^{2}+z^{3}$. Calculate

$$
\iint_{S} D_{\mathbf{n}} f d S
$$

where $D_{\mathbf{n}}$ is the directional derivative along \mathbf{n}.

$$
\text { We haver } D_{\bar{n}} f=\bar{n} \cdot \nabla f \text { so the ingram is }
$$

$$
\iint_{S} \nabla \mathcal{F} . \pi \mathrm{d} \delta \text {, ie. the toy of } \nabla f \text { coos } S \text {. }
$$

By the divergence treoren, tins inkegralisequal to:

$$
\begin{aligned}
& \iiint_{E} d v(\nabla f) \partial V=\iint_{E} \frac{\partial}{\partial x^{2}} x+\frac{\partial}{\partial y^{2}} y^{2}+\frac{\partial}{\partial z^{2}} z^{3} d V \\
&=2 \iiint_{E} d V+6 \iiint_{E} z d V=2 V_{0} \mid(E)+0^{0} \\
& \text { spoor } \\
&=2 \cdot \frac{4}{3} \pi \quad \begin{array}{l}
\text { cater of mas } \\
\text { is the organ }
\end{array}
\end{aligned}
$$

