9. Consider the ellipse £ given by:

22 /a? + 2/ = 1.

(a) Define a change of variables mapping the unit disk {u? + v* < 1} to E. (b) Use
this this to show that the area of E is mab.

(o) T ov)=xs4) !
/\> (o)

e ==
('0)

\_ = Z =L
\ vHue|  *=qu ( V= Yy E= o 2,
N )=pV vffﬂ/b) o4 p>
(b)[_\m 3 1A =
ol c = S A‘ S\Sid\é%: 55 9 /b('i)\j)/du&v
E D (O,V)

= D
— oo ( jg 1 ah dodv = %méb}
= Tra./o//



10. Find the volume of the region consisting of all points that are inside the sphere z* +
y? + 2? = 4, above the plane z = 0, and below the plane z = =.
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10. Find the volume of the region consisting of all points that are inside the sphere z* +
y? + 2? = 4, above the plane z = 0, and below the plane z = =.
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11. The force exerted by an electric charge at the origin on an electron at the point (z, v, 2)
with position vector ¥ = (z, 7, z) is F(r) = —Kr/|r|?> where K is a constant. Find the
work done by this force as the electron moves along a straight line segment from (2, 0, 0)

to (2,1,5). 2 .
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12. Consider a surface S in 3—space given by an equation z = f(z) (so that its trace in
every plane y = c¢ is exactly the same). Show that if F = (22, y*, z2) thenﬁc F.-dr=20

for every simple closed curve C' lying on the surface S. (hinf: Stokes’ theorem)




13. Let F = {ay?, 2y(x + 2),by* + 2°). (a) For what values of a,b is F conservative? (b)
Using these values, find a function f(x,v, ) such that F = Vf. (c) Using these values,

give the equation of a surface S with the property that

Q
/ F-dr=20
P

for any two points P, () on the surface S.
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13. Let F = {ay?, 2y(x + 2),by* + 2%). (a) For what values of a,b is F conservative? (b)

Using these values, find a function f(x,y, z) such that F = V f. (¢) Using these values,
give the equation of a surface S with the property that

Q
/ F-dr=20
P

for any two points P, () on the surface S.
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13. Let F = {ay?, 2y(x + 2),by* + 2%). (a) For what values of a,b is F conservative? (b)
Using these values, find a function f(x,y, z) such that F = V f. (¢) Using these values,
give the equation of a surface S with the property that
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14. A surface S is parameterized by

r(u,v) = (u, v, uv) u® +v* < 1.

(a) Find its surface area. (b) Parameterize the boundary curve C' of S, oriented
positively with respect to the orientation of S given by r, X r,.
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14. A surface S is parameterized by
r(u,v) = (u, v, uv) u® +v* < 1.

(a) Find its surface area. (b) Parameterize the boundary curve C' of S, oriented
positively with respect to the orientation of S given by r, X r,.

N oS5 D, 8 187 @ lom
%’(’M@%M@ <COX \(o/\. L) }

e

U

201/«\1}0‘/\{ 0p_g 4 CO&‘Q/ 3/'4&/ b 18 7
?%IHW’QIMW &6[0/ 7/7/2



15. Let S be the graph of the function f(x,y) = 2 — 2* — y* which lies above the disk
D = {(z,y) : 2* +y* < 1} in the Zy—plane. The surface S is oriented so that the
normal vector points upwards. Compute the flux 2 5 o
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16. A broken wine bottle is placed on the xy-plane as shown in the picture. It consists of
a portion of a cylinder of radius 1 centered along the z—axis, and its bottom is a unit
disk in the xy—plane centered at the origin. Let C' be the path along the broken edge
oriented as shown in the picture, and let F = (—y, 2x,102). Evaluate the line integral

$ F - dr.
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