(a) There are two unit vectors u and v such that the sum u + v has length 1/3.

(b) If f(z,y) is continuous and both f, and f, are defined and continuous on R?, then
f(z,y) must be differentiable on R*.
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(c) The work done by a vector field on a particle moving along a parameterized
curve C' is independent of the time taken to traverse C, and depends only on the
trajectory.

(d) The number of critical points of a differentiable function on R? must be finite.
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(e) If f(x,y, z) is a solution of Laplace’s equation ?le/

O*f )02 +0°f)Oy* +0°f/0z* =0

then the flux of V f through the unit sphere, outwardly oriented, must be zero.
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f) If F is a conservative vector field then div(F) = 0.
@) dv (7F) = (.Uf = O - Troe
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(g) There exists a vector field F such that div(F) = 2% + y* + 2°.
(h) There exists a vector field F such that curl(F) = (z%, y*, 2%).
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(i) If F = (1/3,1/3,1/3) then the flux of F across any oriented surface cannot be
larger than its surface area. —

(j) If the flux of F = (P, Q) across every closed curve in the plane is zero, then F

must be conservative. U‘VJ\
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2. A particle moves along the intersection of the surfaces

v+ y* + 227 =4, z = xy.
TN N
Let (z(t),y(t), z(t)) denote the location of the particle at time ¢. Suppose that (z(0),y(0), 2(0)) =

(1 137—31111"’"('0)/ 1. Calculate %'(0) and 2'(0).
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3. Suppose f is a function on R? satisfying the following conditions on its directional
derivatives:

%Dl/\/_l/\/_) (z,y) = Var, D<1/f 1//2) flz,y) = \f’y
(a) Find f,(z,y) and f,(z,y). (b) Assuming that f(0,0) = 0, find the function f(z,y).
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4. Suppose that x,y, z are constrained by the equation g(x,y, z) = 3. Assume that at the
point P(0,0,0) we have g = 3 and Vg = (2,—1,—1). The equation g = 3 implicitly
defines z as a function of x and y in a neighborhood of the origin. Find the value of

0z/0x at P.
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5. (a) Find the equation of a tangent plane to the surface S given by 4xy — 2% = 0 at
P(1,1,2). (b) Use this to approximate the value of 4 x 1.001 x .99 — 2.001%. (c¢) Find
a parametric equation for the line through P perpendicular to S at P.
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5. (a) Find the equation of a tangent plane to the surface S given by 4xy — 2% = 0 at
P(1,1,2). (b) Use this to approximate the value of 4 x 1.001 x .99 — 2.001%. (c) Find
a parametric equation for the line through P perpendicular to S at P.
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6. Use Lagrange multipliers to find the point on the surface g(z,y,2) = 5x*+y*+32* =9
where the function f(x,y,z) = 750 + 5z — 2y + 9z is maxXimized.
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6. Use Lagrange multipliers to find the point on the surface g(z,y, 2) = 5x*+y*+32* =9
where the function f(x,y,z) = 750 + 5x — 2y + 9z is maximized.
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7. Classify the critical points of the area 51 function

flz,y) =2°' —5lo — y°' + 51y

using the becond derivative test. The reason why this function was chosen is classified.
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8. Evaluate by changing the order of integration:
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