Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

Recap
Given a graph $G = (V, E)$ we can find spectral approximators G_1, G_2, a two-partition of G such that G_1, G_2 is spectrally close to $\frac{1}{2}L_G$ with $O(\sqrt{\epsilon \log n})$ error with high probability. This can be achieved using concentration bounds. Using real-stability of polynomials, we can get a $O(\sqrt{\epsilon})$ approximation using the following theorem:

Theorem 7.1. If $v_1, ..., v_n$ are independent vectors such that $\sum_{i=1}^{n} E[v_i v_i^T] = I$ and $Tr(v_i v_i^T) = \epsilon$, then there exists some instance of v_i such that $\left\| \sum_{i=1}^{m} v_i v_i^T \right\| < (1 + \sqrt{\epsilon})^2$. Equivalently,

$$P \left(\left\| \sum_{i=1}^{m} v_i v_i^T \right\| < (1 + \sqrt{\epsilon})^2 \right) > 0$$

In order to prove this theorem, we first use the theory of interlacing families to reduce the theorem to showing $\lambda_{\text{max}} \left(E[\det(xI - \sum_{i=1}^{n} v_i v_i^T)] \right) < (1 + \sqrt{\epsilon})^2$. Now notice that we can write the expected characteristic polynomial nicely using the following identity:

$$E[\det(xI - \sum_{i=1}^{n} v_i v_i^T)] = \prod_{i} (1 - \partial_z) \det(xI + \sum_{i=1}^{n} z_i E[v_i v_i^T]) \bigg|_{z=0}$$

Therefore, it begs the question: how does the operator $(1 - \partial_z)$ change the roots of a polynomial? This will be answered using multivariate barrier functions.

Univariate Barrier
Consider $p(x) = x^n$ and consider what the linear operator $1 - \frac{d}{dx}$ does to the roots, specifically the maximum root.

$p(x)$ has all roots at $x = 0$. Note that $p_1(x) = (1 - \frac{d}{dx})x^n$ has $n - 1$ roots at $x = 0$ and a root at $x = n$. Then, $p_2(x) = (1 - \frac{d}{dx})^2x^n$ has $n - 2$ roots at $x = 0$ and a root at $x = n - \sqrt{n}, n + \sqrt{n}$, respectively. Note that $p_1(x)$ has a maximum root of n, whereas $p(x)$ has a maximum root of 0. Therefore, the maximum root was pushed a distance of n. Then, from $p_1(x)$ to $p_2(x)$, the maximum root was pushed a distance of only \sqrt{n}.
The intuition is that as λ_1 is separated more in distance from the other roots, the amount of pushing done to the maximum root becomes less. We will rigorize this notion using barrier functions.

Definition 7.2. The barrier function of $p(z)$ is $\phi_p(z) = (\log p)' = p' / p = \sum_{i=1}^n \frac{1}{z - \lambda_i}$

Definition 7.3. For all $\alpha < 1$, we let $\alpha_{\text{max}}(p) = \{ x | \phi_p(x) \leq \alpha, x > \lambda_{\text{max}}(p) \}$.

Note that any $x \in \alpha_{\text{max}}(p)$ is a bound on $\lambda_{\text{max}}(p)$ by definition. The idea is that when α is smaller, the difference between $\inf(\alpha_{\text{max}}(p))$ and $\inf(\alpha_{\text{max}}(p - p'))$ can be provably bounded.

Theorem 7.4. If $x \in \alpha_{\text{max}}(p)$, then $x + 1/(1 - \alpha) \in \alpha_{\text{max}}(p - p')$.

The proof uses the following fact:

Fact 7.5. $\phi_p(z)$ is convex and monotonically decreasing in the region above the roots of $p(z)$.

Proof. If we let $\alpha = 1 - 1/\delta$ then it suffices to show $\phi_{p-p'}(x + \delta) \leq 1 - 1/\delta$ given $\phi_p(x) \leq 1 - 1/\delta$.

Note that $\phi_{p-p'} = \phi_{(1-\phi_p^p)} = \phi_1 - \phi_p = \phi_p - \frac{\phi_p^p}{1 - \phi_p}$

Now, by convexity and monotonicity,

$$\phi_{p-p'}(x + \delta) = \phi_p(x + \delta) - \frac{\phi_p^p(x + \delta)}{1 - \phi_p(x + \delta)} - \phi_p(x) + \phi_p(x)$$

$$\leq \phi_p(x) + \phi_p(x + \delta) - \frac{\phi_p^p(x + \delta)}{1 - \phi_p(x)} - \phi_p(x)$$

$$\leq \phi_p(x) + \phi_p(x + \delta) - \delta \phi_p^p(x + \delta) - \phi_p(x) \leq \phi_p(x) \leq 1 - 1/\delta$$

We apply this to $p(x) = x^n$. Note that $\phi_p(x) = n x^{n-1} / x^n = n / x = \alpha$. Therefore, $x = n / \alpha \in \alpha_{\text{max}}(p)$. Therefore, by repeated use of our theorem,

$$\lambda_{\text{max}}((1 - d/dx)^n p) < \frac{n}{\alpha} + \frac{m}{1 - \alpha}$$

Optimizing over $\alpha \in [0, 1]$ gives $\alpha = 1/(1 + \sqrt{m/n})$ and our desired bound of

$$\lambda_{\text{max}}((1 - d/dx)^n p) < (1 + \sqrt{m/n})^2 n$$

Multivariate Barrier

To generalize to multivariate polynomials, we say that x is above $p(x)$ if $p(x + z) \neq 0$ for $z \in \mathbb{R}^n_{\geq 0}$

And we define a directional barrier function: $\phi^i_p = \partial_{z_i}(\log p(z))$.

And for $\alpha < 1$, we say $\alpha_{\text{max}}(p) = \{ x | x \text{ is above } p, \phi^i_p(x) \leq \alpha \forall i \}$.

Then, using convexity and monotonicity arguments as in the univariate case, we get
Theorem 7.6. If \(x \in \alpha_{max}(p) \), then \(x + \frac{1}{1 - \alpha} e_j \in \alpha_{max}(p - \partial_j p) \)

Now, we want to apply this theorem to study the maximum roots of

\[
E[\det(xI - \sum_{i=1}^{n} v_i v_i^T)] = \prod_{i} (1 - \partial_{z_i})\det(xI + \sum_{i=1}^{n} z_i E[v_i v_i^T])|_{z=0} = \prod_{i} (1 - \partial_{y_i})\det(\sum_{i=1}^{n} y_i E[v_i v_i^T])|_{y=x}
\]

Let \(p(y) = \det(\sum_{i=1}^{n} y_i E[v_i v_i^T]) = \det(\sum_{i=1}^{n} y_i A_i) \). Note that

\[
\phi_p^i = \frac{\partial_{z_i} p}{p} = \frac{\det(\sum_{i=1}^{n} y_i A_i)tr((\sum_{i=1}^{n} y_i A_i)^{-1})}{\det(\sum_{i=1}^{n} y_i A_i)}
\]

\[
= tr((\sum_{i=1}^{n} y_i A_i)^{-1}) = \frac{1}{t} tr(A_i) = \epsilon / t \text{ if we set } y = t1
\]

So, we see that \(\phi_p^i \leq \alpha \) when we set \(\alpha = \epsilon / t \).

Since \(A_i \) are positive semidefinite, note that \(t1 \) is above \(p(y) = \det(\sum_{i=1}^{n} y_i A_i) \). Then, repeated use of our theorem gives:

\[
(t + \frac{1}{1 - \alpha})1 = (t + \frac{1}{1 - \epsilon / t})1 \text{ is above } \prod_{i} (1 - \partial_{z_i})p(y)
\]

Therefore, the roots of \(p(x) = \prod_{i} (1 - \partial_{y_i})p(y)|_{y=x1} \) is no bigger than \(t + \frac{1}{1 - \epsilon / t} \) for any \(t > 0 \). Optimizing over \(t \) gives \(t = \sqrt{\epsilon} + \epsilon \) and we conclude that \(\lambda_{max} < (1 + \sqrt{\epsilon})^2 \).