Math 270: Geometry of Polynomials Fall 2015

Lecture 6: Interlacing polynomials, restricted invertibility
Lecturer: Nick Ryder Scribe: Ahmed El Alaoui

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture we introduce the concept of interlacing for polynomials. This concept provide a
convenient way of reasoning about orderings of the roots of real-rooted polynomials. Specifically, it
provides a way of tying the roots of the average polynomial (obtained by averaging the coefficients)
to the roots of the individual polynomials. This can for example —in the spirit of the probabilistic
method— be used to prove that among a collection of symmetric matrices, there exist one that
has eigenvalues lying in a certain range, just by examining the roots of the average characteristic
polynomial of the matrices. This technique will be used to provide an alternative proof of the
Bourgain-Tzafriri restricted invertibility theorem. This material is mostly taken from the survey
[MSS14] and the blog post [Srill.

6.1 Interlacing families of polynomials

A motivating question for introducing interlacing is : what convex sets are contained in the set
of real-rooted polynomials? i.e. when are convex combinations of real-rooted polynomials real-
rooted?

Definition 6.1 (Interlacing). Let f be a monic real-rooted polynomial of degree n and g a monic
real-rooted polynomial of degree n or n — 1, with roots a, < --- < ag, 8, < --- < 1 respectively
(ignoring g, if g is of degree n — 1). We say that g interlaces f if

Bn<an <fBp1 << B <ag.
We adopt the notation ¢ — f to indicate that f has the largest root.

Definition 6.2 (Common interlacing). Let f, g be monic, real-rooted polynomials of degree n with
roots a, < --- < aq, By < .-+ < [ respectively. We say that f and g have a common interlacing
if there exist a polynomial that interlaces both of them. Equivalently, f and g have a common
interlacing if there exist a real sequence a,, < --- < a; such that

Vi<i<n-—1 o4 Bi€ [ait1,a:).
The next theorem (see e.g. [Ded92]]) characterizes real rootedness of convex combinations of real-
rooted polynomials.

Theorem 6.3. Let f and g be two monic, real-rooted polynomials. The following two statements are
equivalent:
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Figure 6.1: Two polynomials with common interlacing and an illustration of Theorem [6.5

1. f and g have a common interlacing.

2. The polynomial hy = tf + (1 — t)g is real rooted for all t € [0, 1].

The proof requires one simple ingredient:

Lemma 6.4. Let ¢ > 0 and f a real-rooted polynomial of degree n. Then the polynomial

fe=UI—e€d)"f

is real-rooted and has simple roots.

Proof. Let T. = I — €. If f has a multiple root z (with multiplicity > 2) then f(z) — ef’(z) = 0
since f(z) = f'(z) = 0. On the other hand the rational function f'/f = 3}, ™ (where m; is
the multiplicity of the root z;) has poles at z; and is equal to 1/e after each z; (see Figure [6.2).
Hence T, f has n real roots, and the multiplicity of each multiple root z; in T, f has dropped by one.
Applying the operator T, n times to f ensures that the resulting n-degree polynomial has all real

and simple roots. 0

Proof of Theorem (1. = 2.) This will be proven in the next theorem. (2. = 1.) Assume as a first
step that f and g have no common roots and that their roots are simple. Under these assumptions
the roots of h; trace n different intervals I; on the real line as ¢ varies from 0 to 1, starting from the
roots of g and ending at the roots of f. Each one of these intervals contains exactly one root of f
and one root of g. Otherwise, (taking g as an example) there would exist a ¢t # 0 and z € R such
that h.(z) = g(z) = 0 which would imply that f(z) = 0 which in turn contradicts the no-common-
roots assumption. Therefore one can choose subintervals J; C I; with pairwise disjoint interiors
containing one root of f and one root of g only, hence establishing interlacing. To prove the general
case, notice that the no-common-roots assumption is not problematic since one can always factor
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the common roots out and put them back at the end. One could easily get an interlacing sequence
for f and g from an interlacing sequence of the factored-out polynomials by adding one additional
point to the sequence on one or the other side of each common root. As for root multiplicity, we
consider a sequence of polynomials f. and g. as defined in Lemma|6.4] These have simple roots for
any € > 0 and converge to f and g respectively uniformly on any bounded interval as ¢ — 0. We
conclude by a limiting argument using the continuity of the roots as a function of the coefficients.

O

This result is very useful when it comes to proving the existence of a common interlacing. One can
prove the real-rootedness of the convex combinations instead of coming up with a clever construc-
tion of an interlacer. Next, we state the main theorem relating the roots of the averaged polynomial
to the roots of the individual polynomials.

Theorem 6.5 (Lamma 4.1 in [MSS13]). Suppose fi,--- , fm are monic, real-rooted polynomials of
degree n. Let \,(f;) denote the kth larget root of f; and let ;1 be any probability measure on the set
{1,---,m}. If f1,---, fm have a common interlacing, then for all k € {1,--- ,n},

min A (f;) < A Bz [f1]) < max Ax(fi)-

Proof. Fix k € {1,--- ,n}. Let a,, < --- < a; be the common interlacing sequence for the polyno-
mials f1,---, fm, i-e. . agr1 < Ae(fi) < ax. The polynomials (f;) are all monic, so they all have
the same sign at a;,; and the same opposite sign at a;. Hence their average changes sign in the
interval [ax11,akl, so it has to vanish in the same interval by the intermediate value theorem. It is
therefore real-rooted by a simple counting argument (thereby also proving the implication 1. = 2.
in Theorem [6.3). Moreover, it is easy to see that the root is sandwiched between the smallest and
the largest root of the f;’s on the interval [a41, ax]. O

The connection to the probabilistic method is made readily clear in the above theorem: if one can
bound the kth root of the expected polynomial E;.,, [f7], then there exist at least one polynomial
fi the kth root of which obeys the same bound.

6.2 Restricted Invertibility

The above technique will be used to prove that a version of Bourgain and Tzafriri’s restricted
invertibility theorem that says any matrix of high enough rank contains a well invertible sub-matrix.

Theorem 6.6 (Bourgain-Tzafriri [BT87], Vershynin [VerO1]). Suppose v1,--- , v, € R™ are vectors
with >, viv] = I,. Then for every k < n there exist a subset S C {1,--- ,m} of size k with

2
A (val) > (1 S) %
€S

The above theorem says that if the vectors v; are isotropic (i.e. E[{u,v;)?] = 1 for any unit norm
vector u) then there exist a well conditioned subset of the vectors v; of any size. Before diving into
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the proof machinery, let us pause for a second to discuss the sharpness of the statement in the above
theorem. If the vectors vy, - ,v,, are the columns of a n x m Gaussian matrix G with centered
entries of variance 1/m then E[GG "] = I, and by concentration of measure ", v;v] = I(1+0(1))
with very high probability. Moreover, the matrix GG is a Wishart matrix and its spectrum is very
well understood and gives rise to the Marchenko-Pastur distribution in the limit n/m — a for a
fixed. It is in particular known that the spectrum is supported on the interval [(1 — /a)?, (1 + v/a)?]
in the limit, and very sharp (sub-Gaussian) concentration bounds hold for finite n and m on both
boundaries of this interval. This in particular means that for any submatrix S of G of size n x k,
k/n ~ a < 1, the matrix SST = Y, s v;v] has a smallest eigenvalue greater than (1—/a+o0(1))?2
with high probability, which means that the above bound is un-improvable in general.

The proof of this result requires essentially two main ideas: a construction of an interlacing family
of polynomials related to the matrices v;v] and a way to analyze and bound the roots of the average
polynomial. The relevant polynomials to be used here are characteristic polynomials of symmetric
matrices.

Recall that the characteristic polynomial of a square matrix A is the polynomial in z
X(A)(z) = det(z — A).

A basic property of the characteristic polynomial is that if A is symmetric, then y(A) is real-rooted.
Moreover, the characteristic behaves nicely under rank one updates of the matrix A, this is illus-
trated in Cauchy’s interlacing theorem:

Theorem 6.7 (Cauchy’s interlacing theorem). Let A be a symmetric matrix and v be a vector then
X(A) — x(A+wvoT),

i.e. x(A) interlaces x(A + voT).

Proof. We use here a useful rank one update formula for the determinant:
X(A+voT)(x) =det (I — A — voT)
= det (zI — A)det (I — (xI — A)"1voT)
=x(4)(z) (1 —vT(zl — A)"'v) .
Letting (A, u;) be the jth eigenvalue-eigenvector pair of A, we have

" U, Uj 2
X(A 4 voT)(2) = x(A)(z) 1—Z< i) (6.1)

r— A

J=1

Therefore, an eigenvalue of A + vvT is either an eigenvalue of A (if v is orthogonal to the corre-

\2
sponding eigenvector) or such that ¢(x) := Z?Zl %ff\i = 1. ¢ is a rational function that has poles
on the \;’s and takes the value 1 after each poles and before the next one. This establishes the

interlacing property. ]
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Figure 6.2: Illustration of the behavior of the function ¢.

Now consider a fixed real symmetric matrix A and vectors vy, -+ , v, € R". Theorem [6.7]tell us
that

x(A+v10]), -, X (A + vpo],)

have a common interlacing given by the polynomial y(A). Moreover, if we choose the index i to be
uniformly random on {1, --- ,m}, then

n v, U )2
E [x(A + viv])] (@) = x(A) (@) | 1 =D E [{vi, u)°]

=1
When Y7 | v;v] = I, we have E [(v;, u;)?] = 1/m. Hence

E[x(A + vie])] (2) = X(4) (@) — —x(4)' ().

This means that performing a rank one update to the matrix A (when the v;’s are isotropic) has the
effect in expectation of subtracting off a multiple of the derivative from the characteristic polyno-
mial. The above expression can written equivalently as

E [x(A + vio])] = (1 - ;a> X(A). 6.2)

Hence the expected characteristic polynomial of the (random) matrices A + v;v] is the image of
X (A) by the differential operator I — %8. These operators are going to play a crucial role in the
proof of the restricted invertibility result. In particular, a central property that will allow us to
apply the above results inductively on many random variables is that these operator preserve the
interlacing property in the following sense:

Lemma 6.8. Let f1,- -, fn be monic real-rooted polynomials that have a common interlacing. Then
the polynomials (I — «0)fi1,---, (I — ad) fn, are also real-rooted and have a common interlacing for
any o > 0.
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Proof. First, if f is monic and real-rooted then f = x(A) where A is a diagonal matrix containing
the roots of f on its diagonal. Letting v = /o (1,---,1), we have (I — ad)f = x(A + vvT) by
equation (6.I). And by the same argument that lead us to prove Cauchy’s interlacing theorem,
we conclude that (I — «0)f is real rooted as well. Next, by Theorem all convex combinations

fi,-++, fm are real-rooted, hence so are all convex combination of (I — «d) f1,--- , (I — ad) fm, and
we conclude using Theorem [6.3] again. O

Now we are in position of proving the restricted invertibility theorem.

Proof of Theorem To prove the theorem, we need to find a subset of the vectors {vy,- - ,v,,} of
size k with large smallest singular value. We will prove existence of these vectors one by one in an
inductive way. To proceed, for a partial assignment 4y,--- ,4; € {1,--- ,m} for | < k and random
vectors X; € R" uniformly distributed on the set vy, - ,v,,, we define the conditional expected
characteristic polynomial

l k
. J— T YT
Qiv, iy = E | X Zvljvij + Z XJXJ-
j=1 j=l+1

where the expectation is taken with respect to the vectors X;. Note in particular that ¢;, ... ;, =
X (Z?Zl vy, viTj ) We use the convention ¢y for [ = 0. Observe that if we apply the rank one update

formula k — [ times we have

1\ k- !
Gy, g = (I— m3> X Z”ia’”gj

j=1
Fix a partial assignment iq,--- ,4; forl < k—1andlet A = 2221 i, vZ.Tj . By Cauchy’s interlacing in-
terlacing theorem (Theorem, the family of polynomials y (A + vy, +1U¢Tl +1) forij . € {1,---,m}

have a common interlacing, namely x(A). Then, since applying the operator I — %8 preserves in-
terlacing (Lemma [6.8)), the polynomials

1\ A=)

have a common interlacing. Therefore, by Theorem there exist a particular i;;1 € {1,--- ,m}
such that

Ak (qilv"'ail+l) > )‘k(qil,-" ,iz)' (6.3)
Now by induction on [, there exist a complete assignment i1, - - - , i such that

M (Giy i) = M(ag)-

Remark: notice that since E;,, [qi,,.. 5y,,] = @iy, i;» inequality is obtained by essentially

“swapping” the operators [E;,, and \;, and appealing to the probabilistic method (i.e. if E[X] > ¢
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then there exist a realization of X that is greater than ¢). Usually, one can perform this swapping
on simple functions by relying on convexity properties of the function of interest (e.g. Jensen’s
inequality), but the map p — A\ (p) is highly non linear and non convex. The crucial property that
allows this swapping operation is interlacing, which by Theorem transfers “enough” convexity
to the map A, for this to be possible.

Now all is left is to study the roots of the polynomial

k k
1

Jj=1

It turns out that the rescaled polynomial

k

pe(@) =E |x (m> X;XI || =(T-0)a"
=1
can be written as py(z) = :z:”_k’L,(C”_k) (x) where L,(Cn_k) is the associated Laguerre polynomial of

degree k. It is in particular known [Kra06] that the roots of L,(ﬁnfk) lie in the interval

() ()]

and this completes the proof.
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