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Lee Yang Theory of Phase Transitions

Monomer-Dimer model

Let G be a graph with the vertice and edge set as V and E respectively and M be any matching. Let
u(M) denote the number of unmatched vertices (or monomers) in M which is just |V | − 2|M |

Define Z(x) =
∑

M xu(m) where the summation runs over all possible matchings.

Now the average fraction of monomers, M(x) =
∑
M u(M)xu(M)

|V |Z(x) = x
dZ(x)
dt

|V |Z(x) = x
|V |

d lnZ(x)
dx .

Then if we call the polynomial lnZ(x)
|V | to be the free energy of the system, F (x), our M(x) becomes

simply xdF (x)
dx

Ising Model

Now let us consider a slightly different model. Let G be a graph with the vertice and edge set as V
and E respt. Consider some function σ : V → {+,−}. We call σ a spin function.

Now define d(σ) = # edges of G with opposite spins at endpoints.

And m(σ) = # vertices of G with positive spin.

Now for some real number 0 < β < 1 define the polynomial Zβ(x) =
∑

σ β
d(σ)xm(σ) where the

summation runs over all possible functions σ : V → {1,−1}. Since m(σ) is at most |VG|, Zβ(x) is a
polynomial in x with degree at most |V |.

As before we want to find the average magnetization of the graph per volume. In this case we write

it as, Mβ(x) =
∑
σm(σ)βd(σ)xm(σ

|V |Zβ(x) . Similarly if we define the free energy of the graph, Fβ(x) =
lnZβ(x)
|V | ,

then our equation simplifies to Mβ(x) = x
dFβ(x)
dx

Firstly a value of x physically corresponds to the magnitude of a magnetic field. Thus we will
only consider the case when x > 0. What we are interested in are the phase transitions or points
of discontinuities of Mβ(x), which is same as the zeroes of Zβ(x). If we consider finite graphs,
as Zβ(x) has all positive coefficients , these do not have any phase transition. Thus we need to
generalize to infinite graphs. We do this by taking a sequence of finite graphs and looking at the
uniform limit of the Zβ polynomials created by them (assuming of course that such a limit exists).
In such a case it is also known that if each Zβ doesn’t have any roots inside an open region in C,
then the limiting polynomial doesn’t have any zeroes in that set. Thus the following theorem is
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important.

Lee-Yang Thm : Let G be a finite graph, and let Zβ(x) be the partition function of the ferromagnetic
Ising model on G (for some β ∈ (0, 1)). Then all zeroes of Zβ lie on the unit circle.

Corollary : Thus any limiting polynomial will also have no zeroes outside of the unit circle. Thus
as we are only considering real x, the only possible phase transition is at x = 1

Lemma 1 : Consider Zβ(x1, x2, ...., xn) =
∑

σ β
d(σ)

∏
v:σ(v)=+ xv, the multivariate version of Zβ(x).

Then this multinomial has no roots when ∀i, |xi| > 1

proof : Whenever G is a graph by Z(β,G) we mean the Zβ multinomial for G. First we show a few
elementary identities involving Zβ. Let G1, G2 be two disjoint graphs. Let G be G1 ∪ G2. Then
if Ω1,Ω2,Ω are the set of all spin functions on G1, G2, G respectively, there is a obvious canonical
bijection from Ω1 × Ω2 → Ω. Thus Z(β,G) =

∑
σ∈Ω β

d(σ)
∏
v:σ(v)=+ xv

=
∑

(σ1,σ2)∈Ω1×Ω2
βd(σ1)+d(σ2)

∏
v:σ1(v)=+ xv

∏
v:σ2(v)=+ xv

= (
∑

σ1∈Ω1
βd(σ1)

∏
v:σ1(v)=+ xv).(

∑
σ2∈Ω2

βd(σ2)
∏
v:σ2(v)=+ xv)

= Z(β,G1)Z(β,G2).

Next suppose, that v1 and v2 are two non-neighbouring vertices of G. Then let G′ denote the
graph obtained by contracting v1 and v2 to v2. Let Ω3 denote the set of all partition functions on
G − {v1, v2} = G′ − {v2}, and Ω′ that of G′. Then any element of Ω′ can be constructed uniquely
by taking a element of Ω3 and then assigning a spin value to v2 +or−. Thus there is a canonical
bijection from Ω3 × {+,−} → Ω′.

Similarly there is canonical bijection from Ω3 × {+,−} × {+,−} → Ω.

Using this and a calculation similar to the previous one, we find the following;

If Z(β,G)(x1, x2, ...xn) = Ax1.x2 +Bx1 +Cx2 +D, where A,B,C,D are multinomials in (x3, ...., xn),
then Z(β,G′)(x2, x3, ...., xn) = Ax2 + D. In fact A = Z(β,G3)(y3, y4, ...yn) where yi = xi/β if vi is a
neighbour of v1 or v2 and yi = xi otherwise.

Now say a graph G satisfies Lee-Yang Property(LYP) if above lemma is true for G and all induced
subgraphs of G. Then first we show that G′ satisfies LYP. So suppose G satisfies LYP, then Z(β,G) is
non zero whenever |xi| > 1∀i ≤ n. Then fix some values for x3, x4, ...., xn with modulus greater
than 1, and set x1 = x2 = x. Then the quadratic Ax2 + (B + C)x + D has no roots for |x| > 1
(∵ Z(β,G)(x1, x2, ...xn) = Ax1x2 +Bx1 + Cx2 +D is nonzero for all values of xi with |xi| > 1).

Also as A = Z(β,G3)(y3, y4, ...yn) where yi = xi/β if vi is a neighbour of v1 or v2 and yi = xi
otherwise, and β < 1⇒ |xi/β| > 1, and G3 is a subgraph of G, we have that A 6= 0 (by LYP).

∴ the product of its roots D/A ≤ 1. Thus Ax + D is nonzero when |x| > 1 (∵ Ax + D = 0 ⇒ x =
−D/A).

∴ Z(β,G′)(x2, x3, ...., xn) is nonzero when |xi| > 1∀2 ≤ i ≤ n.

Similarly for all subgraphs of G′ same thing holds. So G′ satisfies LYP.

Now the rest of the proof follows an inductive method. First we show that a single point and the
single edge satisfies LYP. For a single isolated vertice there is nothing to show. For a single edge E
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the polynomial Z(β,E)(x1, x2) = 1 + β(x1 + x2) + x1x2.

∴ Z(β,E)(x1, x2) = 0⇒ x1 = 1+βx2

β+x2
.

∵ the right hand side is a Mobius transform which sends the outside of the unit disc to the inside,
if (x1, x2) is a root then |x2| > 1 ⇒ |x1|leq1. Thus no root has both modulus more than 1. As all
sub graphs of E is singletons, this means E satisfies LYP.

Now for a arbitrary graph G, start with a disjoint collection of edges and as many isolated points as
G has, G0. Then since Z(β,G0) is the product of the Zβ functions of each edge and single tons, we
have that Z(β,G0) satisfies LYP. Now by repeatedly contracting we can get G back from G0. Thus as
contraction preserves LYP, Z(β,G) has LYP. In particular Z(β,G) satisfies above lemma.

Proof of Lee-Yang Theorem : By lemma 1, we have that Z(β,G) 6= 0 whenver |xi| > 1∀i. Then

observe that Z(β,G)(x
−1
1 , ....., x−1

n ) =
∑

σ∈Ω β
d(σ)

∏
v:σ(v)=+ xv

−1 =
∑
σ∈Ω β

d(σ)
∏
v:σ(v)=− xv∏

xv
.

But for any sign function we have a unique sign function with exactly opposite signs,

∴ Z(β,G)(x
−1
1 , ....., x−1

n ) =
∑
σ∈Ω β

d(σ)
∏
v:σ(v)=− xv∏

xv
=

Z(β,G)(x1,.....,xn)∏
xv

∴ Z(β,G)(x1, ....., xn) 6= 0 whenever |xi| < 1∀i.

finally observe that the univariate version of Zβ is just the diagonal restriction of the multivariate
version. Hence proved.

This method can be generalised to prove other things. For instance one can prove that Mβ(x) =
xZβ

′(x)
|V |Zβ(x) is #p hard to compute.

To prove this we shall use two known results :

1) Computing Zβ(x) is #p hard.

2) Suppose R(x) = p(x)/q(x) where deg(p) = deg(q) = n then if gcd(p, q) = 1, we have that p and
q can be computed efficiently from 2n+ 2 evaluations of R(x). (Macon, Dupree)

Thus to prove that Mβ is #p hard to compute we only need to prove that Zβ has no repeated roots.
First of observe that if G is disconnected, then this is clearly not true. After all if G = G1 ∪G2 and
G1 ' G2 then as Z(β,G)(x) = Z(β,G1)(x)Z(β,G2)(x), clearly Z(β,G) has a repeated root. So we assume
that G is connected.

Then we have the theorem by Sinclair and Srivastava : Theorem : If G is a connected graphs
then zeroes of Z ′(β,G)(x) are in the open unit disc. Thus as all zeroes of Z(β,G)(x) are on the
circumference, their roots never coincide.

Proof Sketch : The argument for this is precisely the same as before. Say a graph has prop-
erty SSG if it and all of its subgraphs satisfy a multivariate version of the above theorem, i.e.
DZ(β,G)(x1, x2, ...., xn) 6= 0 whenever |xi| ≥ 1∀i where D =

∑
v∈V fracxv∂∂xv.

Then first show that if Ax1x2 + Bx1 + Cx2 + D has no roots outside unit disc (corresponds to G
satisfying SSG)then Az2 + B has no roots outside unit disc (corresponds to contraction of G by
v1, v2 satisfying SSG).
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Finally show that adding a single new edge or vertex also preserves the property and we will be
done via induction.


